FLSEVIER

HORNGAK B A

THE HARDWARE/SOFTWARE INTERFACE

v

2

L'l

COMPUTER
ORGANIZATION
AND DESIGN

.

-

y ’ §§§3-u .
& 'Eaa -
3 S

VRS

DAVID A. PATTERSON
JOHN L. HENNESSY

Instructions:
Language of
the Computer

I speak Spanish to God,
Italian to women,

French to men,

and German to my horse.

Charles V, King of France
1337-1380

2.1 Introduction 48

2.2 Operations of the Computer Hardware 49

2.3 Operands of the Computer Hardware 52

2.4 Representing Instructions in the Computer 60
2.5 Logical Operations 63

2.6 Instructions for Making Decisions 72

2.7 Supporting Procedures in Computer Hardware 79

2.8 Communicating with People 90
2.9 MIPS Addressing for 32-Bit Immediates and Addresses 95
2.10 Translating and Starting a Program 106
2.11 How Compilers Optimize 116
© 2.12 How Compilers Work: An Introduction 121
2.13 A C Sort Example to Put It All Together 121
@ 214 Implementing an Object-Oriented Language 130
2.15 Arrays versus Pointers 130
2.16 Real Stuff: I1A-32 Instructions 134
2.17 Fallacies and Pitfalls 145
2.18 Concluding Remarks 145
© 2.19 Historical Perspective and Further Reading 147
2.20 Exercises 147

The Five Classic Components of a Computer

Compiler

Interface @

-

... Y

Datapath

Evaluating

performance -. | “;.““ ..

Processor

48

Chapter 2 Instructions: Language of the Computer

instruction set The vocabu-
lary of commands understood
by a given architecture.

Introduction

To command a computer’s hardware, you must speak its language. The words of a
computer's language are called instructions, and its vocabulary is called an
instruction set. In this chapter, you will see the instruction set of a real computer,
both in the form written by humans and in the form read by the computer. We
introduce instructions in a top-down fashion. Starting from a notation that looks
like a restricted programming language, we refine it step-by-step until you see the
real language of a real computer. Chapter 3 continues our downward descent,
unveiling the representation of integer and floating-point numbers and the hard-
ware that operates on them.

You might think that the languages of computers would be as diverse as those
of humans, but in reality computer languages are quite similar, more like regional
dialects than like independent languages. Hence, once you learn one, it is easy to
pick up others. This similarity occurs because all computers are constructed from
hardware technologies based on similar underlying principles and because there
are a few basic operations that all computers must provide. Moreover, computer
designers have a common goal: to find a language that makes it easy to build the
hardware and the compiler while maximizing performance and minimizing cost.
This goal is time-honored; the following quote was written before you could buy a
computer, and it is as true today as it was in 1947:

It is easy to see by formal-logical methods that there exist certain [instruction
sets| that are in abstract adequate to control and cause the execution of any se-
quence of operations. . .. The really decisive considerations from the present
point of view, in selecting an [instruction set|, are more of a practical

nature: simplicity of the equipment demanded by the [instruction set], and the
clarity of its application to the actually important problems together with the
speed of its handling of those problems.

Burks, Goldstine, and von Neumann, 1947

The “simplicity of the equipment” is as valuable a consideration for comput-
ers of the 2000s as it was for those of the 1950s. The goal of this chapter is to
teach an instruction set that follows this advice, showing both how it is repre-
sented in hardware and the relationship between high-level programming lan-
guages and this more primitive one. Our examples are in the C programming
language; Section 2.14 shows how these would change for an object-oriented
language like Java.

2.2 Operations of the Computer Hardware

49

By learning how to represent instructions, you will also discover the secret of
computing: the stored-program concept. Moreover you will exercise your “for-
eign language” skills by writing programs in the language of the computer and
running them on the simulator that comes with this book. You will also see the
impact of programming languages and compiler optimization on performance.
We conclude with a look at the historical evolution of instruction sets and an
overview of other computer dialects.

The chosen instruction set comes from MIPS, which is typical of instruction
sets designed since the 1980s. Almost 100 million of these popular microproces-
sors were manufactured in 2002, and they are found in products from ATI Tech-
nologies, Broadcom, Cisco, NEC, Nintendo, Silicon Graphics, Sony, Texas
Instruments, and Toshiba, among others.

We reveal the MIPS instruction set a piece at a time, giving the rationale along
with the computer structures. This top-down, step-by-step tutorial weaves the
components with their explanations, making assembly language more palatable.
To keep the overall picture in mind, each section ends with a figure summarizing
the MIPS instruction set revealed thus far, highlighting the portions presented in
that section.

Operations of the Computer Hardware

Every computer must be able to perform arithmetic. The MIPS assembly language
notation

add a, b, cC

instructs a computer to add the two variables b and ¢ and to put their sum in a.
This notation is rigid in that each MIPS arithmetic instruction performs only
one operation and must always have exactly three variables. For example, suppose
we want to place the sum of variables b, ¢, d, and e into variable a. (In this section
we are being deliberately vague about what a “variable” is; in the next section we’ll
explain in detail.)
The following sequence of instructions adds the four variables:

add a, b, c ## The sum of b and ¢ is placed in a.
add a, a, d # The sum of b, ¢, and d is now in a.
add a, a, e # The sum of b, ¢, d, and e is now in a.

stored-program concept The
idea that instructions and data
of many types can be stored in
memory as numbers, leading to
the stored program computer.

There must certainly be
instructions for performing
the fundamental arithmetic
operations.

Burks, Goldstine, and von
Neumann, 1947

50

Chapter 2 Instructions: Language of the Computer

Thus, it takes three instructions to take the sum of four variables.

The words to the right of the sharp symbol (#) on each line above are comments
for the human reader, and the computer ignores them. Note that unlike other pro-
gramming languages, each line of this language can contain at most one instruction.
Another difference from C is that comments always terminate at the end of a line.

The natural number of operands for an operation like addition is three: the
two numbers being added together and a place to put the sum. Requiring every
instruction to have exactly three operands, no more and no less, conforms to the
philosophy of keeping the hardware simple: hardware for a variable number of
operands is more complicated than hardware for a fixed number. This situation
illustrates the first of four underlying principles of hardware design:

Design Principle 1: Simplicity favors regularity.

We can now show, in the two examples that follow, the relationship of pro-
grams written in higher-level programming languages to programs in this more
primitive notation.

Compiling Two C Assignment Statements into MIPS

This segment of a C program contains the five variables a, b, c, d, and e.
Since Java evolved from C, this example and the next few work for either
high-level programming language:

a =Db + c;:
d =a - e;

The translation from C to MIPS assembly language instructions is per-
formed by the compiler. Show the MIPS code produced by a compiler.

A MIPS instruction operates on two source operands and places the result in
one destination operand. Hence, the two simple statements above compile
directly into these two MIPS assembly language instructions:

add a, b, cC
sub d, a, e

2.2 Operations of the Computer Hardware

51

Compiling a Complex C Assignment into MIPS

A somewhat complex statement contains the five variables f, g, h, 1, and j:

f=1(g+h - (i+]J;

What might a C compiler produce?

The compiler must break this statement into several assembly instructions
since only one operation is performed per MIPS instruction. The first MIPS
instruction calculates the sum of g and h. We must place the result some-
where, so the compiler creates a temporary variable, called t0:

add t0,g,h # temporary variable t0 contains g + h

Although the next operation is subtract, we need to calculate the sum of i
and j before we can subtract. Thus, the second instruction places the sum 1
and j in another temporary variable created by the compiler, called t1:

add tl1,1,] 4 temporary variable tl contains i +]

Finally, the subtract instruction subtracts the second sum from the first and
places the difference in the variable T, completing the compiled code:

sub f,t0,tl # f gets t0 - t1, which is (g + h)-(i + J)

Figure 2.1 summarizes the portions of MIPS assembly language described in
this section. These instructions are symbolic representations of what the MIPS
processor actually understands. In the next few sections, we will evolve this sym-
bolic representation into the real language of MIPS, with each step making the
symbolic representation more concrete.

MIPS assembly Ianguag&

Arithmetic add a,b,c a=b+c Always three operands
subtract sub a,b,c a=Db-c Always three operands

FIGURE 2.1 MIPS architecture revealed in Section 2.2. The real computer operands will be
unveiled in the next section. Highlighted portions in such summaries show MIPS assembly language struc-
tures introduced in this section; for this first figure, all is new.

52

Chapter 2 Instructions: Language of the Computer

Check
Yourself

word The natural unit of access
in a computer, usually a group
of 32 bits; corresponds to the
size of a register in the MIPS
architecture.

For a given function, which programming language likely takes the most lines of
code? Put the three representations below in order.

1. Java
2. C
3. MIPS assembly language

Elaboration: To increase portability, Java was originally envisioned as relying on a
software interpreter. The instruction set of this interpreter is called Java bytecodes,
which is guite different from the MIPS instruction set. To get performance close to the
equivalent C program, Java systems today typically compile Java bytecodes into the
native instruction sets like MIPS. Because this compilation is normally done much later
than for C programs, such Java compilers are often called Just-In-Time (JIT) compilers.
Section 2.10 shows how JITs are used later than C compilers in the startup process,
and Section 2.13 shows the performance consequences of compiling versus interpret-
ing Java programs. The Java examples in this chapter skip the Java bytecode step and
just show the MIPS code that are produced by a compiler.

Operands of the Computer Hardware

Unlike programs in high-level languages, the operands of arithmetic instructions
are restricted; they must be from a limited number of special locations built
directly in hardware called registers. Registers are the bricks of computer construc-
tion: registers are primitives used in hardware design that are also visible to the
programmer when the computer is completed. The size of a register in the MIPS
architecture is 32 bits; groups of 32 bits occur so frequently that they are given the
name word in the MIPS architecture.

One major difference between the variables of a programming language and
registers is the limited number of registers, typically 32 on current computers.
MIPS has 32 registers. (See Section 2.19 for the history of the number of regis-
ters.) Thus, continuing in our top-down, stepwise evolution of the symbolic
representation of the MIPS language, in this section we have added the restriction
that the three operands of MIPS arithmetic instructions must each be chosen
from one of the 32 32-bit registers.

The reason for the limit of 32 registers may be found in the second of our four
underlying design principles of hardware technology:

2.3 Operands of the Computer Hardware

Design Principle 2: Smaller is faster.

A very large number of registers may increase the clock cycle time simply because
it takes electronic signals longer when they must travel farther.

Guidelines such as “smaller is faster” are not absolutes; 31 registers may not be
faster than 32. Yet, the truth behind such observations causes computer designers
to take them seriously. In this case, the designer must balance the craving of pro-
grams for more registers with the designer’s desire to keep the clock cycle fast.
Another reason for not using more than 32 is the number of bits it would take in
the instruction format, as Section 2.4 demonstrates.

Chapters 5 and 6 show the central role that registers play in hardware construc-
tion; as we shall see in this chapter, effective use of registers is key to program per-
formance.

Although we could simply write instructions using numbers for registers, from
0 to 31, the MIPS convention is to use two-character names following a dollar sign
to represent a register. Section 2.7 will explain the reasons behind these names.
For now, we will use $s0, $s1,... for registers that correspond to variables in C
and Java programs and $t0, $t1,... for temporary registers needed to compile
the program into MIPS instructions.

Compiling a C Assighment Using Registers

It is the compiler’s job to associate program variables with registers. Take, for
instance, the assignment statement from our earlier example:

f=(g+h -G+ j;

The variables f, g, h, i, and j are assigned to the registers $s0, $s1, $s2,
$s3, and $s4, respectively. What is the compiled MIPS code?

The compiled program is very similar to the prior example, except we replace
the variables with the register names mentioned above plus two temporary
registers, $£0 and $t1, which correspond to the temporary variables above:

add $t0,%$s1,$s2 # register $t0 contains g + h
add $t1,$s3,%s4 # register $tl contains i + J
sub $s0,%$t0,$t1 4 f gets $t0 - $t1, which is (g + h)-(i + j)

54

Chapter 2 Instructions: Language of the Computer

data transfer instruction A
command that moves data
between memory and registers.

address A value used to delin-
eate the location of a specific
data element within a memory
array.

Memory Operands

Programming languages have simple variables that contain single data elements as
in these examples, but they also have more complex data structures—arrays and
structures. These complex data structures can contain many more data elements
than there are registers in a computer. How can a computer represent and access
such large structures?

Recall the five components of a computer introduced in Chapter 1 and
depicted on page 47. The processor can keep only a small amount of data in regis-
ters, but computer memory contains millions of data elements. Hence, data struc-
tures (arrays and structures) are kept in memory.

As explained above, arithmetic operations occur only on registers in MIPS
instructions; thus, MIPS must include instructions that transfer data between
memory and registers. Such instructions are called data transfer instructions. To
access a word in memory, the instruction must supply the memory address.
Memory is just a large, single-dimensional array, with the address acting as the
index to that array, starting at 0. For example, in Figure 2.2, the address of the
third data element is 2, and the value of Memory|2] is 10.

The data transfer instruction that copies data from memory to a register is tra-
ditionally called load. The format of the load instruction is the name of the opera-
tion followed by the register to be loaded, then a constant and register used to
access memory. The sum of the constant portion of the instruction and the con-
tents of the second register forms the memory address. The actual MIPS name for
this instruction is 1w, standing for load word.

3 100
2 10
1 101
0 1
Address Data
Processor Memory

FIGURE 2.2 Memory addresses and contents of memory at those locations. This is a sim-
plification of the MIPS addressing; Figure 2.3 shows the actual MIPS addressing for sequential word
addresses in memory.

2.3 Operands of the Computer Hardware

Compiling an Assighment When an Operand Is in Memory

Let’s assume that A is an array of 100 words and that the compiler has
associated the variables g and h with the registers $s1 and $s2 as before.
Let's also assume that the starting address, or base address, of the array is in
$s3. Compile this C assignment statement:

g=nh+ A[B];

Although there is a single operation in this assignment statement, one of the
operands is in memory, so we must first transfer A[8] to a register. The ad-
dress of this array element is the sum of the base of the array A, found in reg-
ister $ 53, plus the number to select element 8. The data should be placed in a

temporary register for use in the next instruction. Based on Figure 2.2, the
first compiled instruction is

lw $t0,8(%$s3) 4# Temporary reg $t0 gets A[8]

(On the next page we’ll make a slight adjustment to this instruction, but we’ll
use this simplified version for now.) The following instruction can operate on
the value in $t0 (which equals A[8]) since it is in a register. The instruction
must add h (contained in $s2) to A[8] ($t0) and put the sum in the register
corresponding to g (associated with $s1):

add $s1,%$s2,$t0 # g = h + A[8]

The constant in a data transfer instruction is called the offset, and the register
added to form the address is called the base register.

56

Chapter 2 Instructions: Language of the Computer

Hardware
Software
Interface

alignment restriction

A requirement that data be
aligned in memory on natural
boundaries

In addition to associating variables with registers, the compiler allocates data
structures like arrays and structures to locations in memory. The compiler can
then place the proper starting address into the data transfer instructions.

Since 8-bit bytes are useful in many programs, most architectures address indi-
vidual bytes. Therefore, the address of a word matches the address of one of the 4
bytes within the word. Hence, addresses ot sequential words differ by 4. For exam-
ple, Figure 2.3 shows the actual MIPS addresses for Figure 2.2; the byte address of
the third word is 8.

In MIPS, words must start at addresses that are multiples of 4. This require-
ment is called an alignment restriction, and many architectures have it. (Chapter
5 suggests why alignment leads to faster data transfers.)

Computers divide into those that use the address of the leftmost or “big end”
byte as the word address versus those that use the rightmost or “little end” byte.
MIPS is in the Big Endian camp. (Appendix A, page A-43, shows the two options
to number bytes in a word.)

Byte addressing also affects the array index. To get the proper byte address in
the code above, the offset to be added to the base register $s3 must be 4 X 8, or 32,
so that the load address will select AL8] and not A[8/41]. (See the related pitfall
of page 144 of Section 2.17.)

12 100

8 10
4 101
0 1
Address Data
Processor Memory

FIGURE 2.3 Actual MIPS memory addresses and contents of memory for those words.
The changed addresses are highlighted to contrast with Figure 2.2, Since MIPS addresses each byte, word
addresses are multiples of four: there are four bytes in a word.

2.3 Operands of the Computer Hardware

57

The instruction complementary to load is traditionally called store; it copies
data from a register to memory. The format of a store is similar to that of a load:
the name of the operation, followed by the register to be stored, then offset to
select the array element, and finally the base register. Once again, the MIPS

address is specified in part by a constant and in part by the contents of a register.
The actual MIPS name is sw, standing for store word.

Compiling Using Load and Store

Assume variable h is associated with register $s2 and the base address of the
array A is in $s3. What is the MIPS assembly code for the C assignment state-
ment below?

A[12] = h + A[8];

Although there is a single operation in the C statement, now two of the oper-
ands are in memory, so we need even more MIPS instructions. The first two
instructions are the same as the prior example, except this time we use the

proper offset for byte addressing in the load word instruction to select A[81,
and the add instruction places the sum in $t0:

lw $t0,22(%$s3) 3 Temporary reqg $t0 gets A[8]

add $t0,%$s2,$t0 4 Temporary reg $t0 gets h + A[8]

The final instruction stores the sum into A[12], using 48 as the offset and
register $53 as the base register.

SW $t0,48(%s3) # Stores h + A[8] back into A[12]

Constant or Immediate Operands

Many times a program will use a constant in an operation—tfor example, incre-
menting an index to point to the next element of an array. In fact, more than half

of the MIPS arithmetic instructions have a constant as an operand when running
the SPEC2000 benchmarks.

Chapter 2 Instructions: Language of the Computer

Hardware
Software
Interface

Many programs have more variables than computers have registers. Consequently,
the compiler tries to keep the most frequently used variables in registers and
places the rest in memory, using loads and stores to move variables between regis-
ters and memory. The process of putting less commonly used variables (or those
needed later) into memory is called spilling registers.

The hardware principle relating size and speed suggests that memory must be
slower than registers since registers are smaller. This is indeed the case; data
accesses are faster if data is in registers instead of memory.

Moreover, data is more useful when in a register. A MIPS arithmetic instruc-
tion can read two registers, operate on them, and write the result. A MIPS data
transfer instruction only reads one operand or writes one operand, without oper-
ating on it.

Thus, MIPS registers take both less time to access and have higher throughput
than memory—a rare combination—making data in registers both faster to
access and simpler to use. To achieve highest performance, compilers must use
registers efhiciently.

Using only the instructions we have seen so far, we would have to load a con-
stant from memory to use one. (The constants would have been placed in mem-
ory when the program was loaded.) For example, to add the constant 4 to register
$53, we could use the code

lw $t0, AddrConstant4($sl) # $t0 = constant 4
add $s3,%$s3,%$t0 # $s3 = $s3 + $t0 ($t0 == 4)

assuming that AddrConstant4 is the memory address of the constant 4.

An alternative that avoids the load instruction is to offer versions of the arith-
metic instructions in which one operand is a constant. This quick add instruction
with one constant operand is called add immediate or addi. To add 4 to register
$s3, we just write

addi $s3,%$s3,4 #F $s3 = $s3 + 4

Immediate instructions illustrate the third hardware design principle, first
mentioned in the Fallacies and Pitfalls of Chapter 1:

Design Principle 3: Make the common case fast.

Constant operands occur frequently, and by including constants inside arithmetic
instructions, they are much faster than if constants were loaded from memory.

2.3 Operands of the Computer Hardware

59

MIPS operands

Name —Jerampie———Joomnenws

_ $s0, $s1, . . . , Fast locations for data. In MIPS, data must be in registers to perform arithmetic.
32 registers 610, $t1
. Memory[O], Accessed only by data transfer instructions in MIPS. MIPS uses byte addresses, so
inrdrgemﬂw Memory[4], .. ., sequential word addresses differ by 4. Memory holds data structures, arrays, and
Memory[4294967292] spilled registers.

MIPS assembly Ianguage

add $s1,%s2,%53 Psl =952+ $s3 Three operands; data in registers
Arithmetic subtract sub $s1,%s2,%5s3 $s1 =%s2 —$s3 Three operands; data in registers
add immediate | addi $s1,%s2,100 $51=1%s52+ 100 Used to add constants
Data tranefer load word Tw $s51,100(%s2) $s1 =Memory[$s2 +100] |Data from memory to register
store word sw $51,100(%s2) Memory[$s2 + 100] = $s1 | Data from register to memory

FIGURE 2.4 MIPS architecture revealed through Section 2.3. Highlighted portions show MIPS assembly language

structures introduced in Section 2.3.

Figure 2.4 summarizes the portions of the symbolic representation of the MIPS
instruction set described in this section. Load word and store word are the
instructions that copy words between memory and registers in the MIPS architec-
ture. Other brands of computers use instructions along with load and store to
transfer data. An architecture with such alternatives is the Intel [A-32, described in
Section 2.16.

Given the importance of registers, what is the rate of increase in the number of
registers in a chip over time?

1. Very fast: They increase as fast as Moore’s law, which predicts doubling the
number of transistors on a chip every 18 months.

2. Very slow: Since programs are usually distributed in the language of the
computer, there is inertia in instruction set architecture, and so the number
of registers increases only as fast as new instruction sets become viable.

Elaboration: Although the MIPS registers in this book are 32 bits wide, there is a 64-
bit version of the MIPS instruction set with 32 64-bit registers. To keep them straight,
they are officially called MIPS-32 and MIPS-64. In this chapter, we use a subset of
MIPS-32. Appendix D shows the differences between MIPS-32 and MIPS-64.

Check
Yourself

60

Chapter 2 Instructions: Language of the Computer

binary digit Also called binary
bit. One of the two numbers in

base 2, 0 or 1, that are the com-

ponents of information.

The MIPS offset plus base register addressing is an excellent match to structures as
well as arrays, since the register can point to the beginning of the structure and the off-
set can select the desired element. We'll see such an example in Section 2.13.

The register in the data transfer instructions was originally invented to hold an
index of an array with the offset used for the starting address of an array. Thus, the
base register is also called the index register. Today's memories are much larger
and the software model of data allocation is more sophisticated, so the base
address of the array is normally passed in a register since it won't fit in the offset,
as we shall see.

Section 2.4 explains that since MIPS supports negative constants, there is no need
for subtract immediate in MIPS.

Representing Instructions in the
Computer

We are now ready to explain the difference between the way humans instruct
computers and the way computers see instructions. First, let’s quickly review how
a computer represents numbers.

Humans are taught to think in base 10, but numbers may be represented in any
base. For example, 123 base 10 = 1111011 base 2.

Numbers are kept in computer hardware as a series of high and low electronic
signals, and so they are considered base 2 numbers. (Just as base 10 numbers are
called decimal numbers, base 2 numbers are called binary numbers.) A single digit
of a binary number is thus the “atom” of computing, since all information is com-
posed of binary digits or bits. This fundamental building block can be one of two
values, which can be thought of as several alternatives: high or low, on or off, true
or false, or 1 or 0.

Instructions are also kept in the computer as a series of high and low electronic
signals and may be represented as numbers. In fact, each piece of an instruction
can be considered as an individual number, and placing these numbers side by
side forms the instruction.

Since registers are part of almost all instructions, there must be a convention to
map register names into numbers. In MIPS assembly language, registers $s0 to
$s7 map onto registers 16 to 23, and registers $t0 to $t7 map onto registers 8 to
15. Hence, $50 means register 16, $s1 means register 17, $52 means register
18,..., $t0 means register 8, $£1 means register 9, and so on. We'll describe the
convention for the rest of the 32 registers in the following sections.

2.4 Representing Instructions in the Computer

61

Translating a MIPS Assembly Instruction into a Machine Instruction

Let’s do the next step in the refinement of the MIPS language as an example.
We'll show the real MIPS language version of the instruction represented
symbolically as

add $t0,%s1,8s/

first as a combination of decimal numbers and then of binary numbers.

The decimal representation is

0 17 18 8 0 32

Each of these segments of an instruction is called a field. The first and last fields
(containing 0 and 32 in this case) in combination tell the MIPS computer that
this instruction performs addition. The second field gives the number of the reg-
ister that is the first source operand of the addition operation (17 = $s1), and the
third field gives the other source operand for the addition (18 = $s2).The fourth
field contains the number of the register that is to receive the sum (8 = $t0). The
fitth field is unused in this instruction, so it is set to 0. Thus, this instruction adds
register $51 to register $s2 and places the sum in register $t0.

This instruction can also be represented as fields of binary numbers as op-
posed to decimal:

000000 10001 10010 01000 00000 100000
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

To distinguish it from assembly language, we call the numeric version of
instructions machine language and a sequence of such instructions machine code.

This layout of the instruction is called the instruction format. As you can see
from counting the number of bits, this MIPS instruction takes exactly 32 bits—
the same size as a data word. In keeping with our design principle that simplicity
favors regularity, all MIPS instructions are 32 bits long.

It would appear that you would now be reading and writing long, tedious strings of
binary numbers. We avoid that tedium by using a higher base than binary that con-

machine language Binary rep-
resentation used for communi-
cation within a computer
system.

instruction format A form of
representation of an instruction
composed of fields of binary
numbers.

62

Chapter 2

Instructions: Language of the Computer

Hexadecimal m Hexadecimal m Hexadecimal m Hexadecimal m

Opey 0000,,, 0100,,, 8., 10004, Chex 1100,,,
1hex D{}Dihﬂu 5he:-; Dlﬂitwn ghex 10{}11:\-'0 dhe:-; 110 1two
2, 0010y, Bpcs 0110,,, B 1010,,, €hey 1110,,,
3, 0011,,, The 0111,,, Br o 1011,,, i 1111,

FIGURE 2.5 The hexadecimal-binary conversion table. Just replace one hexadecimal digit by the corresponding four binary
digits, and vice versa. If the length of the binary number is not a multiple of 4, go from right to left.

hexadecimal Numbers in verts easily into binary. Since almost all computer data sizes are multiples of 4, hexa-

base 16. decimal (base 16) numbers are popular. Since base 16 is a power of 2, we can trivially
convert by replacing each group of four binary digits by a single hexadecimal digit,
and vice versa. Figure 2.5 converts hexadecimal to binary, and vice versa.

Because we frequently deal with different number bases, to avoid confusion we
will subscript decimal numbers with fen, binary numbers with two, and hexadeci-
mal numbers with hex. (If there is no subscript, the default is base 10.) By the way,
C and Java use the notation Oxnnnn for hexadecimal numbers.

Binary-to-Hexadecimal and Back

Convert the following hexadecimal and binary numbers into the other base:
eca8 6420,

0001 0011 0101 0111 1001 1011 1101 11114,

m Just a table lookup one way:
ecas Edzﬂhﬂ

PN

A
1110 1100 1010 1000 0110 0100 0010 00004,
And then the other direction too:
0001 0011 0101 0111 1001 1011 1101 11114,

\

2.4 Representing Instructions in the Computer

MIPS Fields

MIPS fields are given names to make them easier to discuss:

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Here is the meaning of each name of the fields in MIPS instructions:

B op: Basic operation of the instruction, traditionally called the opcode.
rs: The first register source operand.
rt: The second register source operand.

rd: The register destination operand. It gets the result of the operation.

shamt: Shift amount. (Section 2.5 explains shift instructions and this term;
it will not be used until then, and hence the field contains zero.)

B funct: Function. This field selects the specific variant of the operation in the
op field and is sometimes called the function code.

A problem occurs when an instruction needs longer fields than those shown
above. For example, the load word instruction must specify two registers and a
constant. If the address were to use one of the 5-bit fields in the format above, the
constant within the load word instruction would be limited to only 2° or 32. This
constant is used to select elements from arrays or data structures, and it often
needs to be much larger than 32. This 5-bit field is too small to be useful.

Hence, we have a conflict between the desire to keep all instructions the same
length and the desire to have a single instruction format. This leads us to the final
hardware design principle:

Design Principle 4: Good design demands good compromises.

The compromise chosen by the MIPS designers is to keep all instructions the
same length, thereby requiring different kinds of instruction formats for ditferent
kinds of instructions. For example, the format above is called R-type (ftor register)
or R-format. A second type of instruction format is called I-type (for immediate)
or I-format and is used by the immediate and data transfer instructions. The fields
of [-format are

op s rt constant or address

6 bits 5 bits 5 bits 16 bits

opcode The field that denotes
the operation and format of an
instruction.

64

Chapter 2 Instructions: Language of the Computer

The 16-bit address means a load word instruction can load any word within a
region of + 215 0r 32,768 bytes (+21° or 8192 words) of the address in the base reg-
ister rs. Similarly, add immediate is limited to constants no larger than +2%,
(Chapter 3 explains how to represent negative numbers.) We see that more than
32 registers would be ditficult in this format, as the rs and rt fields would each
need another bit, making it harder to fit everything in one word.

Let’s look at the load word instruction from page 57:

Tw $t0,32(%$s3) # Temporary reg $t0 gets A[8]

Here, 19 (for $53) is placed in the rs field, 8 (for $t0) is placed in the rt field, and
32 is placed in the address field. Note that the meaning of the rt field has changed
for this instruction: in a load word instruction, the rt field specifies the destina-
tion register, which receives the result of the load.

Although multiple formats complicate the hardware, we can reduce the com-
plexity by keeping the formats similar. For example, the first three fields of the R-
type and I-type formats are the same size and have the same names; the fourth
field in I-type is equal to the length of the last three fields of R-type.

In case you were wondering, the formats are distinguished by the values in the
first field: each format is assigned a distinct set of values in the first field (op) so
that the hardware knows whether to treat the last half of the instruction as three
fields (R-type) or as a single field (I-type). Figure 2.6 shows the numbers used in
each field for the MIPS instructions covered through Section 2.3.

nsrucion | Format | op | rs | vt | rd | shami | funt | address _
add R 0 reg reg reg 0 n.a

321:&”
sub (subtract) R 0 reg reg reg 0 34, n.a.
add immediate I 8ian reg reg n.a. n.a. n.a. constant
1w (load word) I 35, reg reg n.a. n.a. n.a. address
SW (store word) I 434, reg reg n.a. n.a. n.a. address

FIGURE 2.6 MIPS instruction encoding. In the table above, “reg” means a register number between
0 and 31, "address” means a 16-bit address, and "n.a.” (not applicable) means this field does not appear in
this format. Note that add and s ub instructions have the same value in the op field; the hardware uses the
funct field to decide the variant of the operation: add (32) or subtract (34).

2.4 Representing Instructions in the Computer 65

Translating MIPS Assembly Language into Machine Language

We can now take an example all the way from what the programmer writes to
what the computer executes. If $t 1 has the base of the array A and $s2 corre-
sponds to h, the assignment statement

AL300] = h + A[300];
is compiled into

lw $t0,1200(%$tl) # Temporary reg $t0 gets A[300]
add $t0,%$s2,%t0 i Temporary reg $t0 gets h + A[300]

sw $t0,1200(%$t1) 4 Stores h + A[300] back into A[300]

What is the MIPS machine language code for these three instructions?
For convenience, let’s first represent the machine language instructions using m
decimal numbers. From Figure 2.6, we can determine the three machine lan-

guage instructions:
address/
shamt funct
35 9 8

1200
0 18 8 8 0 32
43 9 8 1200

The 1w instruction is identified by 35 (see Figure 2.6) in the first field
(op). The base register 9 ($t1) is specified in the second field (rs), and the
destination register 8 ($10) is specified in the third field (rt). The offset to
select AL300] (1200 = 300 x 4) is found in the final field (address).

The add instruction that follows is specified with 0 in the first field (op)
and 32 in the last field (funct). The three register operands (18, 8, and 8) are
found in the second, third, and fourth fields and correspond to $s2, $t0,
and $t0.

66

Chapter 2 Instructions: Language of the Computer

Check
Yourself

the BIG

Picture

The sw instruction is identified with 43 in the first field. The rest of this
final instruction is identical to the 1w instruction.

The binary equivalent to the decimal form is the following (1200 in base
10 is 0000 0100 1011 0000 base 2):

100011 01001 01000 0000 0100 1011 0000
000000 10010 01000 01000 00000 100000
101011 01001 01000 0000 0100 1011 0000

Note the similarity of the binary representations of the first and last in-
structions. The only difference is in the third bit from the left.

Figure 2.7 summarizes the portions of MIPS assembly language described in

this

section. As we shall see in Chapters 5 and 6, the similarity of the binary repre-

sentations of related instructions simplifies hardware design. These instructions
are another example of regularity in the MIPS architecture.

Why doesn’t MIPS have a subtract immediate instruction?

l.

Negative constants appear much less frequently in C and Java, so they are
not the common case and do not merit special support.

Since the immediate field holds both negative and positive constants, add
immediate with a negative number is equivalent to subtract immediate
with a positive number, so subtract immediate is superfluous.

Today’s computers are built on two key principles:
1. Instructions are represented as numbers.
2. Programs are stored in memory to be read or written, just like numbers.

These principles lead to the stored-program concept; its invention let the
computing genie out of its bottle. Figure 2.8 shows the power of the concept;
specifically, memory can contain the source code for an editor program, the
corresponding compiled machine code, the text that the compiled program
is using, and even the compiler that generated the machine code.

One consequence of instructions as numbers is that programs are often
shipped as files of binary numbers. The commercial implication is that
computers can inherit ready-made software provided they are compatible
with an existing instruction set. Such “binary compatibility” often leads
industry to align around a small number of instruction set architectures.

2.4 Representing Instructions in the Computer

67

MIPS operands

Name [empie ————— Joommems

32 $s0, $s1,..., $s7 Fast locations for data. In MIPS, data must be in registers to perform arithmetic.
registers $tLO,$T1,..., $t7/ Registers $s0-%s/ map to 16-23 and $t0-$t/7 map to 8-15.
230 Memory[O], Accessed only by data transfer instructions in MIPS. MIPS uses byte addresses, so
memaory Memory[4], . .., sequential word addresses differ by 4. Memory holds data structures, arrays, and
words Memory[4294967292] spilled registers.
MIPS assa-mhl_v language
e add $s1,%$s2,%$s3 $s1 = $s2 + $s3 Three operands; data in registers
rithmetic

subtract sub $sl,%$s2,%s3 $s1 = $s2 - $s3 Three operands; data in registers
Data load word Tw $s1,100(%s2) |%$s1l=Memory[$s2+ 100] Data from memory to register
transfer store word sw $s51,100(%s2) |Memory[$s2+100] =3%s1 Data from register to memory

MIPS machine language

L Y S

add R add $s1,$s2,%s3

sub R 0 18 19 17 0 34 sub $s1,%$s52,%s3

addi | 8 18 17 100 addi $s1,%s2,100

1w | 35 18 17 100 Iw $s51,100(%s2)

SW | 43 18 17 100 sw $51,100(%s2)

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits [All MIPS instructions 32 bits
R-format R op s rt rd shamt funct Arithmetic instruction format
I-format | op rs rt address Data transfer format

FIGURE 2.7 MIPS architecture revealed through Section 2.4. Highlighted portions show MIPS machine language structures
introduced in Section 2.4. The two MIPS instruction formats so far are R and L. The first 16 bits are the same: both contain an op field, giv-
ing the base operation; an rs field, giving one of the sources; and the rt field, which specifies the other source operand, except for load word,
where it specifies the destination register. R-format divides the last 16 bits into an rd field, specifying the destination register; shamt field,
which Section 2.5 explains; and the funct field, which specifies the specific operation of R-format instructions. I-format keeps the last 16
bits as a single address field.

Elaboration: Representing decimal numbers in base 2 gives an easy way to represent
positive integers in computer words. Chapter 3 explains how to represent negative num-
bers, but for now take it on faith that a 32-bit word can represent integers between —231
and +2°1 —1 or 2,147 ,483,648 to +2,147,483,647, and the 16bit constant field really
holds —21° to +2%° — 1 or 32,768 to 32,767. Such integers are called two’'s complement
numbers. Chapter 3 shows how we would encode addi $t0,%t0,-1or 1w $t0, -4($s0),
which require negative numbers in the constant field of the immediate format.

Chapter 2 Instructions: Language of the Computer

“Contrariwise,” continued
Tweedledee, “if it was so, it
might be; and if it were so, it
would be; but as it isn't, it
ain’t. That's logic.”

Lewis Carroll, Alice’s Adven-
tures in Wonderland, 1865

: Accounting program |
. (machine code) :

L e e e e e e e e e e — —

Editor program |
(machine code) :

— e — ——— — — — — — — — — —

— e — — — — — — — — — — —

: C compiler :
T ' (machine code) |

e e e e e e e e e e — — —

O S e .

b e e e e e e e m— — — e — —

e

— e — — — — — —— — — — — —

e S S S T S S S

Source code in C |
for editor program :

e e e = = = = = = = = = =

FIGURE 2.8 The stored-program concept. Stored programs allow a computer that performs
accounting to become, in the blink of an eye, a computer that helps an author write a book. The switch hap-
pens simply by loading memory with programs and data and then telling the computer to begin executing
at a given location in memory. Treating instructions in the same way as data greatly simplifies both the
memory hardware and the software of computer systems. Specifically, the memory technology needed for
data can also be used for programs, and programs like compilers, for instance, can translate code written in
a notation far more convenient for humans into code that the computer can understand.

Logical Operations

Although the first computers concentrated on full words, it soon became clear that
it was useful to operate on fields of bits within a word or even on individual bits.
Examining characters within a word, each of which are stored as 8 bits, is one exam-
ple of such an operation. It follows that instructions were added to simplify, among
other things, the packing and unpacking of bits into words. These instructions are
called logical operations. Figure 2.9 shows logical operations in C and Java.

2.5 Logical Operations

69

MIPS instructions

<< <<

Shift left 11

Shift right > E 5Pl
Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, ori
Bit-bybit NOT = = nor

FIGURE 2.2 C and Java logical operators and their corresponding MIPS instructions.

The first class of such operations is called shifts. They move all the bits in a
word to the left or right, filling the emptied bits with 0s. For example, if register
$s0 contained

0000000000000000000000000000000010014,6= Y+en

and the instruction to shift left by 4 was executed, the new value would look like
this:

0000 0000000000000000000000001001 00004yo= 144..,

The dual of a shift left is a shift right. The actual name of the two MIPS shift
instructions are called shift left logical (s11) and shift right logical (sr1). The fol-
lowing instruction performs the operation above, assuming that the result should
go in register $t7:

s11T $t2,$s0,4 4 reg $t2 = reg $s0 << 4 bits

We delayed explaining the shamt field in the R-format. It stands for shift
amount and is used in shift instructions. Hence, the machine language version of
the instruction above is

op rs rt rd shamt funct

The encoding of s11 is 0 in both the op and funct fields, rd contains $t2, rt con-
tains $s0, and shamt contains 4. The rs field is unused, and thus is set to 0.

Shift left logical provides a bonus benefit. Shifting left by 7 bits gives the
same result as multiplying by 2’ (Chapter 3 explains why). For examgle, the
above s11 shifts by 4, which gives the same result as multiplying by 2* or 16.

70

Chapter 2 Instructions: Language of the Computer

NOT A logical bit-by-bit oper-
ation with one operand that
inverts the bits; that is, it
replaces every 1 with a 0, and
every 0 with a 1.

NOR A logical bit-by-bit oper-
ation with two operands that
calculates the NOT of the OR of

the two operands.

The first bit pattern above represents 9, and 9 X 16 = 144, the value of the sec-
ond bit pattern.

Another usetul operation that isolates fields is AND. (We capitalize the word to
avoid confusion between the operation and the English conjunction.) AND is a
bit-by-bit operation that leaves a 1 in the result only if both bits of the operands
are 1. For example, if register $t 2 still contains

000000000000000000001101000000004,,0

and register $t1 contains

000000000000000000111100000000004,,0

then, after executing the MIPS instruction

and $t0,$t1,$t2 # reg $t0 = reg $tl1 & reg $t2

the value of register $t 0 would be
00000000000000000000110000000000+,,

As you can see, AND can apply a bit pattern to a set of bits to force Os where there
is a 0 in the bit pattern. Such a bit pattern in conjunction with AND is tradition-
ally called a mask, since the mask “conceals” some bits.

To place a value into one of these seas of 0s, there is the dual to AND, called OR.
[t is a bit-by-bit operation that places a 1 in the result if either operand bit is a 1.
To elaborate, if the registers $t1 and $t2 are unchanged from the preceding
example, the result of the MIPS instruction

or $t0,$t1,$t2 # reg $t0 = reg $t1 | reg $t2

is this value in register $ t0:

000000000000000000111101000000004,,0

The final logical operation is a contrarian. NOT takes one operand and places a
1 in the result if one operand bit is a 0, and vice versa. In keeping with the two-
operand format, the designers of MIPS decided to include the instruction NOR
(NOT OR) instead of NOT. If one operand is zero, then it is equivalent to NOT.
For example, A NOR 0 = NOT (A OR 0) = NOT (A).

[f the register $t1 is unchanged from the preceding example and register $t3
has the value 0, the result of the MIPS instruction

nor $t0,$t1,$t3 # reg $t0 = ~ (reg $tl1 | reg $t3)

2.5 Logical Operations

71

is this value in register $ t0:

111111111111111111000011 111111114,

Figure 2.9 above shows the relationship between the C and Java operators and
the MIPS instructions. Constants are useful in AND and OR logical operations as
well as in arithmetic operations, so MIPS also provides the instructions and
immediate (andi) and or immediate (ori). Constants are rare for NOR, since its
main use is to invert the bits of a single operand; thus, the hardware has no imme-
diate version. Figure 2.10, which summarizes the MIPS instructions seen thus far,
highlights the logical instructions.

MIPS operands

Namo [ampie ——— Joomments

32 $s0, $s1 ,..., §s7 Fast locations for data. In MIPS, data must be in registers to perform arithmetic.
registers $t0,%t1,..., $t7 Registers $50-$57 map to 16-23 and $t0-$t7 map to 8-15.

20 Memory[O], Accessed only by data transfer instructions. MIPS uses byte addresses, so
memaory Memory[4], .. ., sequential word addresses differ by 4. Memory holds data structures, arrays, and
words Memory[4294967292] spilled registers.

MIPS assembly Ianguag&

$s51,%s2,%53 $51=%s52 + §s53 Three operands; overflow detected

Arithmetic | subtract 5 ub $s1,$52,%53 $s51=%s57 - $s3 Three operands; overflow detected

add immediate addi $s1,%s2,100 $s1 = $s2 + 100 + constant; overflow detected

and and $s1,$s2,$s3 $51 =9%$52 & $s3 Three reg. operands; bit-by-bit AND

or or $s1,$s2,$s3 $51 =552 | $s53 Three reg. operands; bit-by-hit OR

nor nor $s1,$s2,$s3 $sl=~($s52 |$53) Three reg. operands; bit-by-bit NOR
Logical and immediate andi $s1,$s2,100 $s1=%s52 & 100 Bit-by-bit AND reg with constant

or immediate ori $s1,$s2,100 $s1=%s2| 100 Bit-by-bit OR reg with constant

shift left logical sl $s1,$s2,10 $s1 =%52 << 10 Shift left by constant

shift right logical 5r] $$s1,$s2,10 $s1=$s2 >> 10 Shift right by constant
Data load word Tw $s1,100(%s2) $s1 = Memory[$s2 + 100]| Werd from memory to register
transfer store word SW $s1,100(%s2) Memory[$s2 + 100]= $sl | Word from register to memory

FIGURE 2.10 MIPS architecture revealed thus far. Color indicates the portions introduced since Figure 2.7 on page 67. The back
endpapers of this book also list the MIPS machine language.

72

Chapter 2 Instructions: Language of the Computer

The utility of an automatic
computer lies in the possibility
of using a given sequence of
instructions repeatedly, the
number of times it is iterated
being dependent upon the
results of the computation.
When the iteration is com-
pleted a different sequence of
[instructions] is to be followed,
50 we must, tn most cases, give
two parallel trains of [instruc-
tions| preceded by an instruic-
tion as to which routine is to be
followed. This choice can be
made to depend upon the sign
of a number (zero being reck-
oned as plus for machine pur-
poses). Consequently, we
introduce an [instruction| (the
conditional transfer [instruc-
tion[) which will, depending
on the sign of a given number,
cause the proper one of two
routines to be executed.

Burks, Goldstine, and von
Neumann, 1947

Instructions for Making Decisions

What distinguishes a computer from a simple calculator is its ability to make
decisions. Based on the input data and the values created during com-
putation, different instructions execute. Decision making is commonly rep-
resented in programming languages using the if statement, sometimes
combined with go to statements and labels. MIPS assembly language includes
two decision-making instructions, similar to an if statement with a go fo. The
first instruction is

beg registerl, registerZ, L1

This instruction means go to the statement labeled L1 if the value in registerl
equals the value in register2. The mnemonic beq stands for branch if equal.
The second instruction is

bne registerl, registerZ, L1

It means go to the statement labeled L1 if the value in registerl does not equal
the value in register2. The mnemonic bne stands for branch if not equal.
These two instructions are traditionally called conditional branches.

Compiling if-then-else into Conditional Branches

In the following code segment, f, g, h, i, and j are variables. If the five vari-
ables f through j correspond to the five registers $s0 through $s4, what is
the compiled MIPS code for this C if statement?

if (i==J)f=g+h;elsef=g-h;

Figure 2.11 is a flowchart of what the MIPS code should do. The first expres-
sion compares for equality, so it would seem that we would want beq. In gen-
eral, the code will be more etficient if we test for the opposite condition to

branch over the code that performs the subsequent then part of the if (the la-
bel E1se is defined below):.

bne $s3,%$s4,Else i go to Else if i #]

2.6 Instructions for Making Decisions 13

The next assignment statement performs a single operation, and if all the op- conditional branch An
erands are allocated to registers, it is just one instruction: instruction that requires the
comparison of two values and
add $s0,$s1,$s2 # f =9+ h (skipped if i #]) that allows for a subsequent

transfer of control to a new

We now need to go to the end of the if statement. This example introduces ~ 2ddressin the program based on
another kind of branch, often called an unconditional branch. This instruc- 3Gt eus S G IEH (D ER i TaE ol
tion says that the processor always follows the branch. To distinguish between

conditional and unconditional branches, the MIPS name for this type of in-

struction is jump, abbreviated as j (the label Exit is defined below).

j Exit # go to Exit

The assignment statement in the else portion of the if statement can again be
compiled into a single instruction. We just need to append the label E1se to
this instruction. We also show the label Exit that is after this instruction,
showing the end of the if-then-else compiled code:

Else:sub $s0,%sl,$s? #f =9 - h (skipped if i = J)
Exit:

Notice that the assembler relieves the compiler and the assembly language pro-
grammer from the tedium of calculating addresses for branches, just as it does for
calculating data addresses for loads and stores (see Section 2.10).

f=g+h f=g-h

Exit:l

FIGURE 2.11 Illlustration of the options in the if statement above. The left box corresponds
to the then part of the if statement, and the right box corresponds to the else part.

74 Chapter 2 Instructions: Language of the Computer

Hardware Compilers frequently create branches and labels where they do not appear in the
Software programming language. Avoiding the burden of writing explicit labels and
branches is one benefit of writing in high-level programming languages and is a
Interface cion coding is faster at that level.

Loops

Decisions are important both for choosing between two alternatives—tfound in if
statements—and for iterating a computation—found in loops. The same assem-
bly instructions are the building blocks for both cases.

.
Compiling a while Loop in C

Here is a traditional loop in C:

while (savel[i] == k)
i +=1;

Assume that i and k correspond to registers $s3 and $s5 and the base of the
array save is in $s6. What is the MIPS assembly code corresponding to this
C segment?

The first step is to load save[i] into a temporary register. Before we can
load savel[1] into a temporary register, we need to have its address. Before
we can add 1 to the base of array save to form the address, we must multi-
ply the index i by 4 due to the byte addressing problem. Fortunately, we can
use shift left logical since shifting left by 2 bits multiplies by 4 (see page 69 in
Section 2.5). We need to add the label Loop to it so that we can branch back
to that instruction at the end of the loop:

Loop:s11 $t1,$s3,2 # Temp reg $t1 = 4 * i
To get the address of save[1],weneed toadd $t1 and the base of Save in $s6:

add $t1,$t1,8$s6 # $t1 = address of save[i]

Now we can use that address to load save[1] into a temporary register:

Tw $t0,0(%t1) i Temp reg $t0 = savel[i]

2.6 Instructions for Making Decisions

75

The next instruction performs the loop test, exiting it save[1] = k:

bne $t0,%$s5, Exit 4 go to Exit if savel[i] # k
The next instruction adds 1 to 7:

add $s3,%s3,1 #i=1+1

The end of the loop branches back to the while test at the top of the loop. We
just add the Exit label after it, and we're done:

] Loop if go to Loop
Exit:

(See Exercise 2.33 for an optimization of this sequence.)

Such sequences of instructions that end in a branch are so fundamental to compil-
ing that they are given their own buzzword: a basic block is a sequence of instruc-
tions without branches, except possibly at the end, and without branch targets or
branch labels, except possibly at the beginning. One of the first early phases of
compilation is breaking the program into basic blocks

The test for equality or inequality is probably the most popular test, but some-
times it is useful to see if a variable is less than another variable. For example, a for
loop may want to test to see if the index variable is less than 0. Such comparisons are
accomplished in MIPS assembly language with an instruction that compares two
registers and sets a third register to 1 if the first is less than the second; otherwise, it
is set to 0. The MIPS instruction is called set on less than, or s1t. For example,

slt $t0, $s3, $s4

means that register $£0 is set to 1 if the value in register $s3 is less than the value
in register $s4; otherwise, register $t0 is set to 0.

Constant operands are popular in comparisons. Since register $zero always
has 0, we can already compare to 0. To compare to other values, there is an imme-
diate version of the set on less than instruction. To test if register $s2 is less than
the constant 10, we can just write

slti $t0,%s2,10 # $t0 =1 if $s2 < 10

Heeding von Neumann’s warning about the simplicity of the “equipment,” the
MIPS architecture doesn’t include branch on less than because it is too compli-
cated; either it would stretch the clock cycle time or it would take extra clock
cycles per instruction. Two faster instructions are more useful.

Hardware
Software
Interface

basic block A sequence of
instructions without branches
(except possibly at the end) and
without branch targets or
branch labels (except possibly at
the beginning).

Chapter 2 Instructions: Language of the Computer

Hardware
Software
Interface

jump address table Also
called jump table. A table of
addresses of alternative instruc-
tion sequences.

MIPS compilers use the s1t, s1ti, beq, bne, and the fixed value of 0 (always
available by reading register $zero) to create all relative conditions: equal, not
equal, less than, less than or equal, greater than, greater than or equal. (As you
might expect, register $ zero maps to register 0.)

Case/Switch Statement

Most programming languages have a case or switch statement that allows the pro-
grammer to select one of many alternatives depending on a single value. The sim-
plest way to implement swifch is via a sequence of conditional tests, turning the
switch statement into a chain of if-then-else statements.

Sometimes the alternatives may be more efhiciently encoded as a table of
addresses of alternative instruction sequences, called a jump address table, and
the program needs only to index into the table and then jump to the appropriate
sequence. The jump table is then just an array of words containing addresses that
correspond to labels in the code. See the In More Depth exercises in Section 2.20
for more details on jump address tables.

To support such situations, computers like MIPS include a jump register
instruction (jr), meaning an unconditional jump to the address specified in a
register. The program loads the appropriate entry from the jump table into a reg-
ister, and then it jumps to the proper address using a jump register. This instruc-
tion is described in Section 2.7.

Hardware
Software
Interface

Although there are many statements for decisions and loops in programming lan-
guages like C and Java, the bedrock statement that implements them at the next
lower level is the conditional branch.

Figure 2.12 summarizes the portions of MIPS assembly language described in
this section, and Figure 2.13 summarizes the corresponding MIPS machine lan-
guage. This step along the evolution of the MIPS language has added branches
and jumps to our symbolic representation, and fixes the useful value 0 perma-
nently in a register.

Elaboration: If you have heard about delayed branches, covered in Chapter 6,
don’t worry: The MIPS assembler makes them invisible to the assembly language

programmer.

2.6 Instructions for Making Decisions

17

MIPS operands

32 registers

$s0, $s1, ...,

$s57

$t0, %L1, ... 5L/,

Fast locations for data. In MIPS, data must be in registers to perform arithmetic. Registers $s0-
$57 map to 16-23 and $t0-5t7 map to 8-15. MIPS register $zero always equals 0.

$zero
230 memory Memaory[O], Accessed only by data transfer instructions in MIPS. MIPS uses byte addresses, so sequential
words Memony[4], . . ., word addresses differ by 4. Memory holds data structures, arrays, and spilled registers.
Memory[4294967292]

MIPS assemhly language

jump

Porr $s51,%s2,%s53 $s1 =%s52 + $s3 Three operands; data in registers
subtract sub $sl,$s2,8s53 $s1 =%s2 - %53 Three operands; data in registers
SN load word Tw $s1,100(%s2) $s1 = Memory[$s2 + 100] Data from memory to register
store word sw $s1,100(%s2) Memory[$52 + 100] = $s1 Data from register to memory
and and $s51,%$s52,%s53 $51 =19%s52 & $s3 Three reg. operands; bit-bybit AND
or or $s51,%$s52,%s53 $s1 =19$s2 | $s3 Three reg. operands; bit-bybit OR
nor nor $s1,%s2,%s53 $s1 =~ ($s52 |$s3) Three reg. operands; bit-bybit NOR
Logical and immediate andi $s51,%s52,100 $s1=1%s2 & 100 Bit-by-bit AND reg with constant
or immediate ori $s51,%s52,100 $s1=1%s2 | 100 Bit-by-bit OR reg with constant
shift left logical |s11 $s1,%s2,10 $s1=1%s52 << 10 Shift left by constant
shift right logical |srl1 $$s1,%s2,10 $s1=1%s52 »> 10 Shift right by constant
branch on equal |[beq $s1,%s52.,L if ($s1 =%s52)goto L Equal test and branch
branch on not bne $s51,%s2,L if ($s1!=%$s2)goto L Not equal test and branch
N equal
Eg:ﬁ;ﬁmal setonlessthan |s1t $s1,%s52,%s53 if ($s2 < $s53) $s1 =1 Compare less than; used with beq, bne
else $51 =0
setonlessthan |s1t $s1,%s52,100 if ($s2 <100) $s1 =1 Compare less than immediate; used with
immediate else $s1 =0 beq, bne
Unconditional jump] L goto L Jump to target address

FIGURE 2.12 MIPS architecture revealed through Section 2.6. Highlighted portions show MIPS structures introduced in Section 2.6.

C has many statements for decisions and loops while MIPS has few. Which of the

following do or do not explain this imbalance? Why?¢

1. More decision statements make code easier to read and understand.

Check
Yourself

2. Fewer decision statements simplify the task of the underlying layer that is
responsible for execution.

78

Chapter 2

Instructions: Language of the Computer

LS I S S

MIPS machine language

add R add $s1,$s2,%s3

sub R 0 18 19 17 0 34 sub $s1,$s2,%$s3

Tw I 35 18 17 100 Tw $s51,100(%s2)

Sw | 43 18 17 100 sWw $s51,100(%s2)

and R 0 18 19 17 0 36 and $s1,%s52,553

or R 0 18 19 17 0 37 or $s51,%52,%53

nor R 0 18 19 17 0 39 nor $s1,%$s52,%53

andi I 12 18 17 100 andi $s1,%s2,100

ori I 13 18 17 100 ori $s1,%$s52,100

511 R 0 0 18 17 10 0 s11 $s1,%s52,10

5r R 0 0 18 17 10 2 srl $s1,%s52,10

beq | 4 17 18 25 beq $s1,%s2,100

bne | 5 17 18 25 bne $s1,%s2,100

s1t R 0 18 19 17 0 42 s1t $s51,%s2,$s53

] J 2 2500 J 10000 (see Section 2.9)
Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits | All MIPS instructions 32 bits
R-format op rs rt rd shamt funct | Arithmetic instruction format
Iformat | op rs rt address Data transfer, branch format
FIGURE 2.13 MIPS machine language revealed through Section 2.6. Highlighted portions show MIPS structures introduced in Section 2.6.

The J-format, used for jump instructions, is explained in Section 2.9. Section 2.9 also explains the proper values in address fields of branch instructions.

3. More decision statements mean fewer lines of code, which generally
reduces coding time.

4. More decision statements mean fewer lines of code, which generally results
in the execution of fewer operations.

Why does C provide two sets of operators for AND (& and &&) and two sets of
operators for OR (| and ||) while MIPS doesn’t?

1. Logical operations AND and OR implement & and | while conditional
branches implement && and ||.

2. The previous statement has it backwards: && and || correspond to logical
operations while & and | map to conditional branches.

3. They are redundant and mean the same thing: && and || are simply inher-
ited from the programming language B, the predecessor of C.

2.7 Supporting Procedures in Computer Hardware

79

Supporting Procedures in Computer
Hardware

A procedure or function is one tool C or Java programmers use to structure pro-
grams, both to make them easier to understand and to allow code to be reused.
Procedures allow the programmer to concentrate on just one portion of the task
at a time, with parameters acting as a barrier between the procedure and the rest
of the program and data, allowing it to be passed values and return results. We
describe the equivalent in Java at the end of this section, but Java needs everything
from a computer that C needs.

You can think of a procedure like a spy who leaves with a secret plan, acquires
resources, performs the task, covers his tracks, and then returns to the point of
origin with the desired result. Nothing else should be perturbed once the mission

is complete. Moreover, a spy operates on only a “need to know” basis, so the spy
can’t make assumptions about his employer.

Similarly, in the execution of a procedure, the program must follow these six
steps:

1. Place parameters in a place where the procedure can access them.
Transfer control to the procedure.
Acquire the storage resources needed for the procedure.

2

3

4. Perform the desired task.

5. Place the result value in a place where the calling program can access it.
6

Return control to the point of origin, since a procedure can be called from
several points in a program.

As mentioned above, registers are the fastest place to hold data in a computer,
so we want to use them as much as possible. MIPS software follows the following
convention in allocating its 32 registers for procedure calling:

B $a0-%$a3: four argument registers in which to pass parameters
m $v0-$v1: two value registers in which to return values
B $ra: one return address register to return to the point of origin

In addition to allocating these registers, MIPS assembly language includes an
instruction just for the procedures: it jumps to an address and simultaneously
saves the address of the following instruction in register $ra. The jump-and-link
instruction (jal) is simply written

procedure A stored subroutine
that performs a specific task
based on the parameters with
which it is provided.

jump-and-link

instruction An instruction
that jumps to an address and
simultaneously saves the address
of the following instruction in a
register ($ra in MIPS).

80

Chapter 2 Instructions: Language of the Computer

return address A link to the
calling site that allows a proce-
dure to return to the proper
address; in MIPS it is stored in
register $ra.

program counter (PC) The
register containing the address
of the instruction in the pro-
gram being executed

caller The program that insti-
gates a procedure and provides
the necessary parameter values.

callee A procedure that executes
a series of stored instructions
based on parameters provided by
the caller and then returns con-
trol to the caller.

stack A data structure for spill-
ing registers organized as a last-
in-first-out queue.

stack pointer A value denoting
the most recently allocated
address in a stack that shows
where registers should be spilled
or where old register values can

be found.

jal ProcedureAddress

The link portion of the name means that an address or link is formed that points to
the calling site to allow the procedure to return to the proper address. This “link,”
stored in register $ra, is called the return address. The return address is needed
because the same procedure could be called from several parts of the program.

Implicit in the stored-program idea is the need to have a register to hold the
address of the current instruction being executed. For historical reasons, this reg-
ister is almost always called the program counter, abbreviated PC in the MIPS
architecture, although a more sensible name would have been instruction address
register. The jal instruction saves PC + 4 in register $ra to link to the following
instruction to set up the procedure return.

To support such situations, computers like MIPS use a jump register instruction
(jr), meaning an unconditional jump to the address specified in a register:

jr %ra

The jump register instruction jumps to the address stored in register $ ra—which
is just what we want. Thus, the calling program, or caller, puts the parameter val-
ues in $a0-%$a3 and uses jal X to jump to procedure X (sometimes named the
callee). The callee then performs the calculations, places the results in $v0-$v1,
and returns control to the caller using jr $ra.

Using More Registers

Suppose a compiler needs more registers for a procedure than the four argument
and two return value registers. Since we must cover our tracks after our mission is
complete, any registers needed by the caller must be restored to the values that
they contained before the procedure was invoked. This situation is an example in
which we need to spill registers to memory, as mentioned in the Hardware Soft-
ware Interface section on page 58.

The ideal data structure for spilling registers is a stack—a last-in-first-out
queue. A stack needs a pointer to the most recently allocated address in the stack
to show where the next procedure should place the registers to be spilled or where
old register values are found. The stack pointer is adjusted by one word for each
register that is saved or restored. Stacks are so popular that they have their own
buzzwords for transferring data to and from the stack: placing data onto the stack
is called a push, and removing data from the stack is called a pop.

MIPS software allocates another register just for the stack: the stack pointer
($sp), used to save the registers needed by the callee. By historical precedent,
stacks “grow” from higher addresses to lower addresses. This convention means
that you push values onto the stack by subtracting from the stack pointer. Adding
to the stack pointer shrinks the stack, thereby popping values oft the stack.

2.7 Supporting Procedures in Computer Hardware 81

Compiling a C Procedure That Doesn’t Call Another Procedure

Let’s turn the example on page 51 into a C procedure: m

int leaf_example (int g, int h, int 1, int j)
{

int f;

f=1(0(g+h) -1+]);
return f;

}
What is the compiled MIPS assembly code?

The parameter variables g, h, i, and j correspond to the argument registers
$a0, $al, $a2, and $a3, and f corresponds to $s0. The compiled program
starts with the label of the procedure:

leaf_example:

The next step is to save the registers used by the procedure. The C assignment
statement in the procedure body is identical to the example on page 51,
which uses two temporary registers. Thus, we need to save three registers:
$s0, $t0,and $t1. We “push” the old values onto the stack by creating space
for three words on the stack and then store them:

addi $sp,¥sp,-12 # adjust stack to make room for 3 items
sw $tl, 8($sp) # save register $tl1 for use afterwards
sw $t0, 4($sp) +# save register $t0 for use afterwards
sw $s0, 0($sp) # save register $s0 for use afterwards

Figure 2.14 shows the stack before, during, and after the procedure call. The
next three statements correspond to the body of the procedure, which follows
the example on page 51:

add $t0,%a0,%al # register $t0 contains g + h
add $t1,%a2,%a3 # register $tl contains i + j
sub $s0,$t0,$t1 # f = $t0 - $t1, which is (g + h)-(i + j)

To return the value of f, we copy it into a return value register:

add $v0,%$s0,%zero # returns f ($v0 = $s0 + 0)

82

Chapter 2 Instructions: Language of the Computer

Before returning, we restore the three old values of the registers we saved by
“popping” them from the stack:

lw $s0, 0($sp) # restore register $s0 for caller
lw $t0, 4($sp) # restore register $t0 for caller
lw $tl, 8($sp) # restore register $tl for caller
addi $sp,¥sp,12 i adjust stack to delete 3 items

The procedure ends with a jump register using the return address:

jr %ra # jump back to calling routine

[n the example above we used temporary registers and assumed their old values
must be saved and restored. To avoid saving and restoring a register whose value is
never used, which might happen with a temporary register, MIPS software sepa-
rates 18 of the registers into two groups:

B $t0-$t9:10 temporary registers that are not preserved by the callee
(called procedure) on a procedure call

B $s0-$s7:8 saved registers that must be preserved on a procedure call
(if used, the callee saves and restores them)

This simple convention reduces register spilling. In the example above, since the
caller (procedure doing the calling) does not expect registers $t0 and $t1 to be
preserved across a procedure call, we can drop two stores and two loads from the
code. We still must save and restore $s0, since the callee must assume that the
caller needs its value.

High address
$sp— $sp—
Contents of register $t1
Contents of register $t0
$ sp—| Contents of register $s0
Low address a. b. C.

FIGURE 2.14 The values of the stack pointer and the stack (a) before, (b) during, and (c)
after the procedure call. The stack pointer always points to the "top” of the stack, or the last word in
the stack in this drawing,.

2.7 Supporting Procedures in Computer Hardware

Nested Procedures

Procedures that do not call others are called leaf procedures. Life would be
simple if all procedures were leaf procedures, but they aren’t. Just as a spy
might employ other spies as part of a mission, who in turn might use even
more spies, so do procedures invoke other procedures. Moreover, recursive
procedures even invoke “clones” of themselves. Just as we need to be careful
when using registers in procedures, more care must also be taken when invok-
ing nonleaf procedures.

For example, suppose that the main program calls procedure A with an
argument of 3, by placing the value 3 into register $a0 and then using jal A.
Then suppose that procedure A calls procedure B via jal B with an argument
of 7, also placed in $a0. Since A hasn’t finished its task yet, there is a conflict
over the use of register $a0. Similarly, there is a conflict over the return
address in register $ra, since it now has the return address for B. Unless we
take steps to prevent the problem, this conflict will eliminate procedure A’s
ability to return to its caller.

One solution is to push all the other registers that must be preserved onto the
stack, just as we did with the saved registers. The caller pushes any argument regis-
ters ($a0-%$a3) or temporary registers ($£L0-$t9) that are needed after the call.
The callee pushes the return address register $ra and any saved registers ($s0-
$s7) used by the callee. The stack pointer $ sp is adjusted to account for the num-
ber of registers placed on the stack. Upon the return, the registers are restored
from memory and the stack pointer is readjusted.

Compiling a Recursive C Procedure, Showing Nested Procedure
Linking

Let’s tackle a recursive procedure that calculates factorial:

int fact (int n)

{
if (n < 1) return (1);

else return (n * fact(n-1));

J
What is the MIPS assembly code?

B4

Chapter 2 Instructions: Language of the Computer

The parameter variable n corresponds to the argument register $a0. The
compiled program starts with the label of the procedure and then saves two
registers on the stack, the return address and $a0:

fact:
addi $sp,$sp,-8 # adjust stack for 2 items
SW $ra, 4($sp) # save the return address
SW $a0, 0($sp) # save the argument n

The first time fact is called, sw saves an address in the program that called
fact. The next two instructions test if n is less than 1, going to L1 if n > 1.

s1ti $t0,%a0,1 #f test for n <1
beq $t0,$zero,L1 # if n >=1, go to L1

It nis less than 1, fact returns 1 by putting 1 into a value register: it adds 1
to 0 and places that sum in $v0. It then pops the two saved values oft the
stack and jumps to the return address:

addi $v0,$%$zero,l # return 1
addi $sp,$sp,8 ## pop 2 items off stack
jr $ra ## return to after jal

Before popping two items off the stack, we could have loaded $a0 and $ra. Since
$a0 and $ra don’t change when n is less than 1, we skip those instructions.

If n is not less than 1, the argument n is decremented and then fact is
called again with the decremented value:

L1: addi$a0,%$a0,-1 # n >= 1: argument gets (n - 1)
jalfact # call fact with (n - 1)

The next instruction is where fact returns. Now the old return address and
old argument are restored, along with the stack pointer:

lw $a0, 0($sp) # return from jal:restore argument n
lw $ra, 4($sp) i restore the return address
addi $sp, $sp.8 if adjust stack pointer to pop 2 items

2.7 Supporting Procedures in Computer Hardware

Next, the value register $v0 gets the product of old argument $a0 and the
current value of the value register. We assume a multiply instruction is avail-
able, even though it is not covered until Chapter 3:

mul $v0,%a0,$v0 4 return n * fact (n - 1)

Finally, fact jumps again to the return address:

jr $ra # return to the caller

A Cvariable is a location in storage, and its interpretation depends both on its type
and storage class. Types are discussed in detail in Chapter 3, but examples include
integers and characters. C has two storage classes: automatic and static. Automatic
variables are local to a procedure and are discarded when the procedure exits. Static
variables exist across exits from and entries to procedures. C variables declared out-
side all procedures are considered static, as are any variables declared using the key-
word static. The rest are automatic. To simplify access to static data, MIPS
software reserves another register, called the global pointer, or $gp.

Figure 2.15 summarizes what is preserved across a procedure call. Note that sev-
eral schemes preserve the stack. The stack above $ sp is preserved simply by making
sure the callee does not write above $sp; $sp is itself preserved by the callee adding
exactly the same amount that was subtracted from it, and the other registers are pre-
served by saving them on the stack (if they are used) and restoring them from there.
These actions also guarantee that the caller will get the same data back on a load
from the stack as it put into the stack on a store because the callee promises to pre-
serve $sp and because the callee also promises not to modity the caller’s portion of
the stack, that is, the area above the $sp at the time of the call.

Saved registers: $s50-$s7 Temporary registers: $t0-$t9
Stack pointer register: $sp Argument registers: $a0-%$a3
Return address register: $ra Retum value registers: $v0-$v1
Stack above the stack pointer Stack below the stack pointer

FIGURE 2.15 What is and what is not preserved across a procedure call. If the software
relies on the frame pointer register or on the global pointer register, discussed in the following sections,
they are also preserved.

Hardware
Software
Interface

global pointer The register
that is reserved to point to static
data.

86

Chapter 2 Instructions: Language of the Computer

procedure frame Also called
activation record. The segment
of the stack containing a proce-
dure’s saved registers and local
variables.

frame pointer A value denot-
ing the location of the saved reg-
isters and local variables for a
given procedure.

Allocating Space for New Data on the Stack

The final complexity is that the stack is also used to store variables that are local to
the procedure that do not fit in registers, such as local arrays or structures. The
segment of the stack containing a procedure’s saved registers and local variables is
called a procedure frame or activation record. Figure 2.16 shows the state of the
stack before, during, and after the procedure call.

Some MIPS software uses a frame pointer ($fp) to point to the first word of
the frame of a procedure. A stack pointer might change during the procedure, and
so references to a local variable in memory might have ditterent offsets depending
on where they are in the procedure, making the procedure harder to understand.
Alternatively, a frame pointer offers a stable base register within a procedure for
local memory references. Note that an activation record appears on the stack
whether or not an explicit frame pointer is used. We've been avoiding $fp by
avoiding changes to $sp within a procedure: in our examples, the stack is adjusted
only on entry and exit of the procedure.

High address
$fp— $fp—
jsp— fsp—
8P| saved argument
registers (if any)
Saved return address
Saved saved
registers (if any)
Local arrays and
§5p—m structures (if any)
Low address a. b. C.

FIGURE 2.16 Illustration of the stack allocation (a) before, (b) during, and (c) after the
procedure call. The frame pointer ($fp) points to the first word of the frame, often a saved argument
register, and the stack pointer ($sp) points to the top of the stack. The stack is adjusted to make room for all
the saved registers and any memory-resident local variables. Since the stack pointer may change during pro-
gram execution, it's easier for programmers to reference variables via the stable frame pointer, although it
could be done just with the stack pointer and a little address arithmetic. If there are no local variables on the
stack within a procedure, the compiler will save time by not setting and restoring the frame pointer. When a
frame pointer is used, it is initialized using the address in $sp on a call, and $sp is restored using $fp.

2.7 Supporting Procedures in Computer Hardware

87

Allocating Space for New Data on the Heap

[n addition to automatic variables that are local to procedures, C programmers
need space in memory for static variables and for dynamic data structures. Fig-
ure 2.17 shows the MIPS convention for allocation of memory. The stack starts
in the high end of memory and grows down. The first part of the low end of
memory is reserved, followed by the home of the MIPS machine code, tradi-
tionally called the text segment. Above the code is the static data segment, which
is the place for constants and other static variables. Although arrays tend to be
to a fixed length and thus are a good match to the static data segment, data
structures like linked lists tend to grow and shrink during their lifetimes. The
segment for such data structures is traditionally called the heap, and it is placed
next in memory. Note that this allocation allows the stack and heap to grow
toward each other, thereby allowing the ethcient use of memory as the two seg-
ments wax and wane.

C allocates and frees space on the heap with explicit functions. malloc() allo-
cates space on the heap and returns a pointer to it, and free () releases space on the
stack to which the pointer points. Memory allocation is controlled by programs in
C, and it is the source of many common and difficult bugs. Forgetting to free space

$sp—7TTT fTfchay Stack

:
T

Dynamic data

$ap—=1000 8000, ., Static data
1000 0000y,
Text
pc—0040 0000y,
Reserved

0

FIGURE 2.17 The MIPS memory allocation for program and data. These addresses are only a
software convention, and not part of the MIPS architecture. Starting top down, the stack pointer is initial-
ized to /fff fffc,,, and grows down toward the data segment. At the other end, the program code
(“text”) starts at 0040 0000}, .,. The static data starts at 1000 0000},.,. Dynamic data, allocated by ma 1 -
loc in C and via NeW in Java, is next and grows up toward the stack in an area called the heap. The global
pointer, $dp, is set to an address to make it easy to access data. It is inifialized to 1000 8000y, so that it
can access from 1000 0000, to 1000 ffff},., using the positive and negative 16-bit offsets from $gp
(see two's complement addressing in Chapter 3).

text segment The segment of a
Unix object file that contains the
machine language code for rou-
tines in the source file.

Chapter 2 Instructions: Language of the Computer

Check
Yourself

leads to a “memory leak” which eventually uses up so much memory that the oper-
ating system may crash. Freeing space too early leads to a “dangling pointers,” which
can cause pointers to point to things that the program never intended.

Figure 2.18 summarizes the register conventions for the MIPS assembly
language. Figures 2.19 and 2.20 summarize the parts of the MIPS assembly instruc-
tions described so far and the corresponding MIPS machine instructions.

Elaboration: What if there are more than four parameters? The MIPS convention is
to place the extra parameters on the stack just above the frame pointer. The procedure
then expects the first four parameters to be in registers $a0 through $a3 and the rest
in memory, addressable via the frame pointer.

As mentioned in the caption of Figure 2.16, the frame pointer is convenient because
all references to variables in the stack within a procedure will have the same offset.
The frame pointer is not necessary, however. The GNU MIPS C compiler uses a frame
pointer, but the C compiler from MIPS/ Silicon Graphics does not; it uses register 30 as
another save register ($s8).

jal actually saves the address of the instruction that follows jal into register $ra,
thereby allowing a procedure return to be simply jr $ra.

Which of the following statements about C and Java are generally true?
1. Procedure calls in C are faster than method invocation in Java.

C programmers manage data explicitly while it’s automatic in Java.

C leads to more pointer bugs and memory leak bugs than does Java.

P W N

C passes parameters in registers while Java passes them on the stack.

Preserved on
Register number | Usage call?

$zero the constant value O

$vO-Fvl 2-3 values for results and expression evaluation no
$al-%a3 4-7 arguments no
$LO-%$t7 8-15 temporaries no
$50-$s7 16-23 saved yes
$t8-%t9 24-25 more temporaries no
fap 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 retum address yes

FIGURE 2.18 MIPS register conventions. Register 1, called $at, is reserved for the assembler (see
Section 2.10), and registers 2627, called $k0-Fk1, are reserved for the operating system.

2.7 Supporting Procedures in Computer Hardware

MIPS operands

32 registers

$s50-$s7, $t0-3t 9,
$zero,$a0-%a3, $v0-%vl,

tagp, $fp, $sp, $ra

Fast locations for data. In MIPS, data must be in registers to perform arithmetic. MIPS
register $Zero always equals 0. $gp (28) is the global pointer, $sp (29) is the stack
pointer, $ Tp (30) is the frame pointer, and $ra (31) is the return address.

230 memory words

Memory[0],
Memory[4], . ..,

Memory[4294967292]

Accessed only by data transfer instructions. MIPS uses byte addresses, so sequential
word addresses differ by 4. Memory holds data structures, arrays, and spilled registers,
such as those saved on procedure calls.

MIPS assembly language

add $s1,%s2,%s3 $s1 = $s2+ §s3 three register operands

Arithmetic subtract sub $s1,%s2,%s3 $s1 = $s52 - $s3 three register operands

load word Tw $s1,100(%s2) $s1 = Memory[$sZ2 +100] |Data from memory to register
Data transfer

store word sw $s1,100(%s2) Memory[$s2 +100] = $s1 |Data from register to memory

and and $s1,%$s2,%s3 $s1=9$s2 & $s3 three reg. operands; bit-bybit AND

or or $s1,%s2,%s3 $s1=$s2 | $s3 three reg. operands; bit-by-bit OR

nor nor $sl,$s2,%$s3 $s1=~ ($s2 |$s3) three reg. operands; bit-bybit NOR
Logical and immediate andi $s1,%$s2,100 $s1=9%s2 & 100 Bit-by-bit AND reg with constant

or immediate ori $s1,%$s2,100 $s1=$s2 | 100 Bit-by-bit OR reg with constant

shift left logical s11 $s1,%$s2,10 $s1=9%s2 << 10 Shift left by constant

shift right logical srl $%sl1,%$s2,10 $s1=9%s2 >> 10 Shift right by constant

branch on equal beq $s1,%s2,L if (§s1 ==%s52)goto L Equal test and branch

branch on not equal | bne $s1,%s52,L if ($51!1=%s52)goto L Not equal test and branch
Conditional branch | €t on less than s1t $s51,%s52,%53 if ($52 < $s3)$s1 =1 Compare less than; used with beq,

else $s1 =0 bne

set on less than st $s1,%s52,100 if ($52 < 100) $s1 =1 Compare less than immediate; used

immediate else $51 =0 with beq, bne

jump J L go to L Jump to target address
Unconditional jump | jump register |[Jr $ra goto fra For procedure retum

jump and link jal L fra=PC+4;goto L For procedure call

FIGURE 2.19 MIPS architecture revealed through Section 2.7. Highlighted portions show MIPS assembly language structures intro-
duced in Section 2.7. The J-format, used for jump and jump-and-link instructions, is explained in Section 2.9.

20

Chapter 2 Instructions: Language of the Computer

MIPS machine language

S Y N
add R 0 18 19 17 0 32 add $s1,%s2,%53

sub R 0 18 19 17 0 34 sub $s1,%$s52,%s3

1w I 35 18 17 100 1w $51,100(%s2)

SW | 43 18 17 100 sw $s51,100(%s2)

and R 0 18 19 17 0 36 and $s51,%$52,%53

or R 0 18 19 17 0 37 or $51,%52,%53

nor R 0 18 19 17 0 39 nor $s51,%$52,%53

andi I 12 18 17 100 andi $s1,%s52,100

ori I 13 18 17 100 ori $s1,%s2,100

511 R 0 0 18 17 10 0 s11 $s1,%s52,10

sr R 0 0 18 17 10 2 srl $s1,%s52,10

beg I 4 17 18 25 beq $s1,%s2,100

bne I 5 17 18 25 bne $s1,%s2,100

s1t R 0 18 19 17 0 42 s1t $s51,%s52,%53

J J 2 2500 J 10000 (see Section 2.9)
jr R 0 31 0 0 0 8 jr $ra

jal J 3 2500 jal 10000 (see Section 2.9)
Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits | All MIPS instructions 32 bits
R-format R op rs rt rd shamt funct | Arithmetic instruction format
Iformat I op rs rt address Data transfer, branch format

FIGURE 2.20 MIPS machine language revealed through Section 2.7. Highlighted portions show MIPS assembly language structures

introduced in Section 2.7. The J-format, used for jump and jump-and-link instructions, is explained in Section 2.9. This section also explains why
putting 25 in the address field of beq and bne machine language instructions is equivalent to 100 in assembly language.

I(

great)

Fourth line of the keyboard

@|=>
(wow open tab at bar is

poem “Hatless Atlas,” 1991

(some give names to ASCII
characters:

1s “wow.

(“1s

open, “|” is bar, and so on)

Communicating with People

Computers were invented to crunch numbers, but as soon as they became com-
mercially viable they were used to process text. Most computers today use 8-bit
bytes to represent characters, with the American Standard Code for Information
Interchange (ASCII) being the representation that nearly everyone follows. Figure
2.21 summarizes ASCIL.

A series of instructions can extract a byte from a word, so load word and store
word are sutficient for transferring bytes as well as words. Because of the popularity

2.8 Communicating with People 91

ASCII
value
32

Char- ASCII Char- ASCII Char- ASCII Char- ASCI Char- ASCI Char-
acter value acter value acter value acter value acter value acter
48 0 64 @ 80 P 96) 112 p

space
33 ! 49 1 65 A 81 Q 97 a 113 q
34) 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 C 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 = 117 u
38 & 54 B 70 F 86 V 102 f 118 v
39 ' 55 7 71 G 87 W 103 g 119 W
40 (56 8 72 H 88 X 104 h 120 X
41) 57 9 73 I 89 Y 105 [121 y
42 * 58 : 74 J 20 z 106 i 122 z
43 + 59 ; 75 K 91 [107 k 123 {
44 : 60 < 76 L 92 LY 108 I 124 |
45 - 61 = 77 M 93] 109 m 125)
46 62 > 78 N 94 A 110 n 126 ~
47 / 63 7 79 0 95 _ 111 o 127 DEL

FIGURE 2.21 ASCII representation of characters. Note that upper- and lowercase letters differ by exactly 32; this observation can lead to short-
cuts in checking or changing upper- and lowercase. Values not shown include formatting characters. For example, 8 represents backspace, 9 represents a
tab character, and 13 a carriage return. Another useful value is 0 for null, the value the programming language C uses to mark the end of a string.

of text in some programs, however, MIPS provides instructions to move bytes. Load
byte (1b) loads a byte from memory, placing it in the rightmost 8 bits of a register.
Store byte (sb) takes a byte from the rightmost 8 bits of a register and writes it to
memory. Thus, we copy a byte with the sequence

Ib $t0,0($sp) if Read byte from source
sb $t0,0($gp) i Write byte to destination

Characters are normally combined into strings, which have a variable number
of characters. There are three choices for representing a string: (1) the first posi-
tion of the string is reserved to give the length of a string, (2) an accompanying
variable has the length of the string (as in a structure), or (3) the last position of a
string is indicated by a character used to mark the end of a string. C uses the third
choice, terminating a string with a byte whose value is 0 (named null in ASCII).
Thus, the string “Cal” is represented in C by the following 4 bytes, shown as deci-
mal numbers: 67, 97, 108, 0.

22

Chapter 2 Instructions: Language of the Computer

Compiling a String Copy Procedure, Showing How to Use C Strings

The procedure strcpy copies string y to string X using the null byte
termination convention of C:

void strcpy (char x[]1, char y[])
{

int 1;
1 = 0;
while ((x[1] = y[i1]) !'= "\0") /* copy & test byte */
T +=1;

}
What is the MIPS assembly code?

Below is the basic MIPS assembly code segment. Assume that base addresses
for arrays x and y are found in $a0 and $al, while i is in $s0. strcpy ad-
justs the stack pointer and then saves the saved register $s0 on the stack:

strcpy:
addi $sp,$sp,-4 # adjust stack for 1 more item
SW $s0, 0($sp) 4 save $s0

To initialize 7 to 0, the next instruction sets $ 50 to 0 by adding 0 to 0 and plac-
ing that sum in $s0:

add $s0,%zero,$zero # i =0+ 0

This is the beginning of the loop. The address of y[1] is first formed by add-
ing 1 to y[1:

L1: add $t1,$s0,%al +# address of y[i] in $tl

Note that we don’t have to multiply 1 by 4 since y is an array of bytes and not
of words, as in prior examples.

To load the character in y[i], we use load byte, which puts the character into
$te:

b $t2, 0($tl) 4 $t2 = y[i]

2.8 Communicating with People

A similar address calculation puts the address of x[1] in $t3, and then the
character in $t?2 is stored at that address.

add $t£3,%s0,%a0 4 address of x[i] in $t3
sb $t2, 0($t3) # x[i] = yl[il]

Next we exit the loop if the character was 0; that is, it it is the last character of
the string:

beq $t2,%zero,L2 # if y[i] == 0, go to LZ

[f not, we increment i and loop back:

addi $s0, $s0,1 # i =1 + 1
j L1 # go to L1

[f we don't loop back, it was the last character of the string; we restore $s0
and the stack pointer, and then return.

L2: Tw $s0, 0(%$sp) # y[i]l == 0: end of string;
restore old $s0
addi $sp,$sp.4 # pop 1 word off stack
jr $ra # return

String copies usually use pointers instead of arrays in C to avoid the opera-
tions on i in the code above. See Section 2.15 for an explanation of arrays
versus pointers.

Since the procedure strcpy above is a leat procedure, the compiler could allo-
cate 1 to a temporary register and avoid saving and restoring $s0. Hence, instead of
thinking of the $t registers as being just for temporaries, we can think of them as
registers that the callee should use whenever convenient. When a compiler finds a
leaf procedure, it exhausts all temporary registers before using registers it must save.

Characters and Strings in Java

Unicode is a universal encoding of the alphabets of most human languages. Figure
2.22 is a list of Unicode alphabets; there are about as many alphabets in Unicode as
there are useful symbols in ASCII. To be more inclusive, Java uses Unicode for
characters. By default, it uses 16 bits to represent a character.

24 Chapter 2 Instructions: Language of the Computer
Latin Malayalam Taghanwa General Punctuation
Greek Sinhala Khmer Spacing Modifier Letters
Cyrillic Thai Mongolian Currency Symbols
Armenian Lao Limbu Combining Diacritical Marks
Hebrew Tibetan Tai Le Combining Marks for Symbols
Arabic Myanmar Kangxi Radicals Superscripts and Subscripts
Syriac Georgian Hiragana Number Forms
Thaana Hangul Jamo Katakana Mathematical Operators
Devanagari Ethiopic EBopomofo Mathematical Alphanumeric Symbols
Bengali Cherokee Kanbun Eraille Patterns
Gurmukhi Unified Canadian Shavian Optical Character Recognition

Aboriginal Syllabic

Gujarati Ogham Osmanya Byzantine Musical Symbols
Oriya Runic Cypriot Syllabary Musical Symbols
Tamil Tagalog Tai Xuan Jing Symbols Arrows
Telugu Hanunoo Yijing Hexagram Symbols | Box Drawing
Kannada Buhid Aegean Numbers Geometric Shapes

FIGURE 2.22 Example alphabets in Unicode. Unicode version 4.0 has more than 160 “blocks,” which is
their name for a collection of symbols. Each block is a multiple of 16. For example, Greek starts at 0370, and
Cyrillic at 0400y,,,.. The first three columns show 48 blocks that correspond to human languages in roughly Uni-
code numerical order. The last column has 16 blocks that are multilingual and are not in order. A 16-bit encod-
ing, called UTF-186, is the default. A variable-length encoding, called UTE-8, keeps the ASCII subset as 8 bits and
uses 16-32 bits for the other characters. UTF-32 uses 32 bits per character. To learn more, see www.unicode.org.

The MIPS instruction set has explicit instructions to load and store such 16-bit
quantities, called halfwords. Load half (1h) loads a haltword from memory, placing it in
the rightmost 16 bits of a register. Store half (sh) takes a halfword from the rightmost
16 bits of a register and writes it to memory. We copy a haltword with the sequence

Ih $t0,0($sp) 4+ Read halfword (16 bits) from source
sh $t0,0($gp) 4+ Write halfword (16 bits) to destination

Strings are a standard Java class with special built-in support and predefined
methods for concatenation, comparison, and conversion. Unlike C, Java includes
a word that gives the length of the string, similar to Java arrays.

Elaboration: MIPS software tries to keep the stack aligned to word addresses, allow-
ing the program to always use 1w and sw (which must be alighed) to access the stack.
This convention means that a char variable allocated on the stack occupies 4 bytes,
even though it needs less. However, a C string variable or an array of bytes will pack 4
bytes per word, and a Java string variable or array of shorts packs 2 halfwords per word.

2.9 MIPS Addressing for 32-Bit Immediates and Addresses

Which of the following statements about characters and strings in C and Java are
true?

1. A string in C takes about half the memory as the same string in Java.

2. Strings are just an informal name for single-dimension arrays of characters
in C and Java.

3. Strings in C and Java use null (0) to mark the end of a string.

4. Operations on strings, like length, are faster in C than in Java.

MIPS Addressing for 32-Bit Immediates
and Addresses

Although keeping all MIPS instructions 32 bits long simplifies the hardware, there
are times where it would be convenient to have a 32-bit constant or 32-bit address.
This section starts with the general solution for large constants, and then shows
the optimizations for instruction addresses used in branches and jumps.

32-Bit Immediate Operands

Although constants are frequently short and fit into the 16-bit field, sometimes
they are bigger. The MIPS instruction set includes the instruction load upper
immediate (1u1i) specifically to set the upper 16 bits of a constant in a register,

allowing a subsequent instruction to specify the lower 16 bits of the constant. Fig-
ure 2.23 shows the operation of Tui .

The machine language version of Tui $t0, 255 # $t0 is register 8:

Check
Yourself

001111 00000 01000 0000 0000 11111111

Contents of register $t0 after executing Tui $t0, 255: 4—

0000 000011111111 0000 0000 0000 0000

FIGURE 2.23 The effect of the 1ui instruction. The instruction 1u1 transfers the 16-bit immediate con-

stant field value into the leftmost 16 bits of the register, filling the lower 16 bits with 0s.

26

Chapter 2 Instructions: Language of the Computer

Hardware
Software
Interface

Either the compiler or the assembler must break large constants into pieces and then
reassemble them into a register. As you might expect, the immediate field’s size restric-
tion may be a problem for memory addresses in loads and stores as well as for constants
in immediate instructions. If this job falls to the assembler, as it does for MIPS software,
then the assembler must have a temporary register available in which to create the long
values. This is a reason for the register $at, which is reserved for the assembler.

Hence, the symbolic representation ot the MIPS machine language is no longer
limited by the hardware, but to whatever the creator of an assembler chooses to
include (see Section 2.10). We stick close to the hardware to explain the architec-
ture of the computer, noting when we use the enhanced language of the assembler
that is not found in the processor.

Loading a 32-Bit Constant

What is the MIPS assembly code to load this 32-bit constant into register $s07?

0000 0000 0011 1101 0OOOO 1001 0000 0O0O0O

First, we would load the upper 16 bits, which is 61 in decimal, using Tui:

lui $s0, 61 # 61 decimal = 0000 0000 0011 1101 binary

The value of register $s0 afterward is

0000 0000 0011 1101 0000 0000 0000 0000
The next step is to add the lower 16 bits, whose decimal value is 2304:

ori $s0, $s0, 2304 # 2304 decimal = 0000 1001 0000 0000

The final value in register $s0 is the desired value:

0000 0000 OOI11 1101 00OO 1001 0000 00O0O

Elaboration: Creating 32-bit constants needs care. The instruction addi copies the
leftmost bit of the 16-bit immediate field of the instruction into the upper 16 bits of a
word. Logical or immediate from Section 2.5 loads Os into the upper 16 bits and hence
is used by the assembler in conjunction with 1ui to create 32-bit constants.

2.9 MIPS Addressing for 32-Bit Immediates and Addresses

Addressing in Branches and Jumps

The MIPS jump instructions have the simplest addressing. They use the final

MIPS instruction format, called the J-type, which consists of 6 bits for the opera-
tion field and the rest of the bits for the address field. Thus,

] 10000 # go to location 10000

could be assembled into this format (it’s actually a bit more complicated, as we
will see on the next page):

2 10000

6 bits 26 bits

where the value of the jump opcode is 2 and the jump address is 10000.
Unlike the jump instruction, the conditional branch instruction must specify
two operands in addition to the branch address. Thus,

bne $s0,$sl,Exit 3 go to Exit if $s0 # $sl

is assembled into this instruction, leaving only 16 bits for the branch address:

5 16 17 Exit

6 bits 5 bits 5 bits 16 bits

If addresses of the program had to fit in this 16-bit field, it would mean that no
program could be bigger than 2'°, which is far too small to be a realistic option
today. An alternative would be to specify a register that would always be added to
the branch address, so that a branch instruction would calculate the following:

Program counter = Register + Branch address

This sum allows the program to be as large as 2°2 and still be able to use condi-
tional branches, solving the branch address size problem. The question is then,
which register?

The answer comes from seeing how conditional branches are used. Conditional
branches are found in loops and in if statements, so they tend to branch to a
nearby instruction. For example, about halt of all conditional branches in
SPEC2000 benchmarks go to locations less than 16 instructions away. Since the
program counter (PC) contains the address of the current instruction, we can

Chapter 2 Instructions: Language of the Computer

PC-relative addressing An
addressing regime in which the
address is the sum of the pro-
gram counter (PC) and a con-
stant in the instruction.

branch within +2'> words of the current instruction if we use the PC as the regis-
ter to be added to the address. Almost all loops and if statements are much smaller
than 2!® words, so the PC is the ideal choice.

This form of branch addressing is called PC-relative addressing. As we shall see
in Chapter 5, it is convenient for the hardware to increment the PC early to point to
the next instruction. Hence, the MIPS address is actually relative to the address of
the following instruction (PC + 4) as opposed to the current instruction (PC).

Like most recent computers, MIPS uses PC-relative addressing for all condi-
tional branches because the destination of these instructions is likely to be close to
the branch. On the other hand, jump-and-link instructions invoke procedures
that have no reason to be near the call, and so they normally use other forms of
addressing. Hence, the MIPS architecture otters long addresses for procedure calls
by using the J-type format for both jump and jump-and-link instructions.

Since all MIPS instructions are 4 bytes long, MIPS stretches the distance of the
branch by having PC-relative addressing refer to the number of words to the next
instruction instead of the number of bytes. Thus, the 16-bit field can branch four
times as far by interpreting the field as a relative word address rather than as a rel-
ative byte address. Similarly, the 26-bit field in jump instructions is also a word
address, meaning that it represents a 28-bit byte address.

Elaboration: Since the PC is 32 bits, 4 bits must come from somewhere else. The
MIPS jump instruction replaces only the lower 28 bits of the PC, leaving the upper 4
bits of the PC unchanged. The loader and linker (Section 2.9) must be careful to avoid
placing a program across an address boundary of 256 MB (64 million instructions); oth-
erwise a jump must be replaced by a jump register instruction preceded by other
instructions to load the full 32-bit address into a register.

Showing Branch Offset in Machine Language

The while loop on page 74 was compiled into this MIPS assembler code:

Loop:sl] $t1,$s3,2 {# Temp reg $t1 = 4 * i
add $t1,$tl1,$s6 # $t1l = address of savel[i]

Tw $t0,0(%t1) i Temp reg $t0 = savel[i]
bne $t0,%$s5, Exit +# go to Exit if savel[i] # k
addi $s3,%$s3,1 #i=1+1

] Loop # go to Loop

Exit:

It we assume we place the loop starting at location 80000 in memory, what is
the MIPS machine code for this loop?

2.9 MIPS Addressing for 32-Bit Immediates and Addresses

29

The assembled instructions and their addresses would look like this:

80000 0 0 19 9 4 0
80004 0 9 22 9 0 32
80008 35 9 8 0

80012 5 8 21 2

80016 8 19 15 1

80020 2 20000

80024

Remember that MIPS instructions have byte addresses, so addresses of se-
quential words differ by 4, the number of bytes in a word. The bne instruction
on the fourth line adds 2 words or 8 bytes to the address of the following instruc-
tion (80016), specifying the branch destination relative to that following in-
struction (8 + 80016) instead of relative to the branch instruction (12 + 80012) or
using the full destination address (80024). The jump instruction on the last line
does use the full address (20000 x 4 = 80000), corresponding to the label Loop.

Nearly every conditional branch is to a nearby location, but occasionally it Hardware
branches far away, farther than can be represented in the 16 bits of the conditional

. . . NN Software
branch instruction. The assembler comes to the rescue just as it did with large
addresses or constants: it inserts an unconditional jump to the branch target,and ~ INterface

inverts the condition so that the branch decides whether to skip the jump.

.
Branching Far Away

Given a branch on register $s0 being equal to register $s1,

beq $s0,%s1, L1

replace it by a pair of instructions that offers a much greater branching distance.

These instructions replace the short-address conditional branch:

bne $s0,%$s1, LZ
] L1
L7 :

100

Chapter 2 Instructions: Language of the Computer

addressing mode One of sev-
eral addressing regimes
delimited by their varied use of
operands and/or addresses.

MIPS Addressing Mode Summary

Multiple forms of addressing are generically called addressing modes. The MIPS
addressing modes are the following:

1. Register addressing, where the operand is a register

2. Base or displacement addressing, where the operand is at the memory loca-
tion whose address is the sum of a register and a constant in the instruction

3. Immediate addressing, where the operand is a constant within the instruc-
tion itself

4. PC-relative addressing, where the address is the sum of the PC and a con-
stant in the instruction

5. Pseudodirect addressing, where the jump address is the 26 bits of the
instruction concatenated with the upper bits of the PC

Hardware
Software
Interface

Although we show the MIPS architecture as having 32-bit addresses, nearly all micro-
processors (including MIPS) have 64-bit address extensions (see @ Appendix D).
These extensions were in response to the needs of software for larger programs. The
process of instruction set extension allows architectures to expand in a way that lets
software move compatibly upward to the next generation of architecture.

Note that a single operation can use more than one addressing mode. Add, for
example, uses both immediate (addi) and register (add) addressing. Figure 2.24
shows how operands are identified for each addressing mode. @, In More Depth
shows other addressing modes found in the IBM PowerPC.

Decoding Machine Language

Sometimes you are forced to reverse-engineer machine language to create the origi-

nal assembly language. One example is when looking at a core dump. Figure 2.25
shows the MIPS encoding of the fields for the MIPS machine language. This figure
helps when translating by hand between assembly language and machine language.

2.9 MIPS Addressing for 32-Bit Immediates and Addresses

101

1. Immediate addressing

op|rs | rt Immediate

2. Register addressing

op|rs | rt | rd]|... funct Registers

| - Register

3. Base addressing

op|rs | nt Address Memory

|
Register é—» [[Byte] Halfword Word
A

4. PC-relative addressing

op|rs | r Address Memory
|
PC @—» Word
i
5. Pseudodirect addressing
op Address Memory

PC ®—~ Word
i

FIGURE 2.24 lllustration of the five MIPS addressing modes. The operands are shaded in
color. The operand of mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions
of load and store access bytes, halfwords, or words. For mode 1, the operand is 16 bits of the instruction
itselt. Modes 4 and 5 address instructions in memory, with mode 4 adding a 16-bit address shifted left 2 bits

to the PC and mode 5 concatenating a 26-bit address shifted left 2 bits with the 4 upper bits of the PC.

102 Chapter 2 Instructions: Language of the Computer

Decoding Machine Code

What is the assembly language statement corresponding to this machine
instruction?

00af8020hex

The first step in converting hexadecimal to binary is to find the op fields:

(Bits: 31 28 26 5 2 0)
0000 0000 1010 1111 1000 00OO 0010 0000

We look at the op field to determine the operation. Referring to Figure 2.25,
when bits 31-29 are 000 and bits 28—26 are 000, it is an R-format instruction.
Let’s reformat the binary instruction into R-format fields, listed in Figure 2.26:

op Is rt rd shamt funct

000000 00101 01111 10000 00000 100000

The bottom portion of Figure 2.25 determines the operation of an R-format
instruction. In this case, bits 5-3 are 100 and bits 2—0 are 000, which means
this binary pattern represents an add instruction.

We decode the rest of the instruction by looking at the field values. The deci-
mal values are 5 for the rs field, 15 for rt, 16 for rd (shamt is unused). Figure
2.18 says these numbers represent registers $al, $t7, and $s0. Now we can
show the assembly instruction:

add $s0,%al,$t/

Figure 2.26 shows all the MIPS instruction formats. Figure 2.27 shows the
MIPS assembly language revealed in Chapter 2; the remaining hidden portion
of MIPS instructions deals mainly with arithmetic covered in the next chapter.

2.9 MIPS Addressing for 32-Bit Immediates and Addresses

103

28-26 0(000) 1(001) 2(010) 3(011) 4(100) 5(1041) 6(110) 7(111)
31-29
0(000) R-format Bltz/gez | jump jump & Tink [branch eq |branch blez bgtz
ne
1(001) add addiu set lTess s1tiu andi ori xori lToad upper imm
immediate than imm.

2(010) TLB F1Pt
3(011)
4(100) load byte lToad half | Twl load word 1bu Thu Twr
5(101) store byte store Sw store word SWr

half
6(110) TweO Twel
7(111) swcl swcl

op(31:26)=010000 (TLB), rs(25:21)

0(000)

1(001)

2(010)

3(011)

4(100)

5(101)

6(110)

7(111)

mfcO

ctcl

mtcl

ctcO

op(31:26)=000000 (R-format), funct(5:0)

2-0 0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

5-3

0(000) shift Teft shift right |[sra s1lv srlv srav
logical logical

1(001) jump reg. jalr syscall break

2(010) mfhi mthi mf 1o mtlo

3(011) mult multu div divu

4(100) add addu subtract subu and ar xor not or (nor)

5(101) set 1.1, s1tu

6(110)

7(111)

FIGURE 2.25 MIPS instruction encoding. This notation gives the value of a field by row and by column. For example, the top portion of the
figure shows 1 0ad word in row number 4 (100, for bits 31-29 of the instruction) and column number 3 (011, for bits 28-26 of the instruction),
so the corresponding value of the op field (bits 31-26) is 100011, . Underscore means the field is used elsewhere. For example, R-format in row 0
and column 0 (op = 000000,,,) is defined in the bottom part of the figure. Hence, subtract in row 4 and column 2 of the bottom section means
that the funct field (bits 5-0) of the instruction is 100010, and the op field (bits 31-26) is 000000y,,,.. The F1Pt value in row 2, column 1 is defined
in Figure 3.20 in Chapter 3. B1tz /gez is the opcode for four instructions found in Appendix A:bltz, bgez, bltzal, and bgezal.Chapter
2 describes instructions given in full name using color, while Chapter 3 describes instructions given in mnemonics using color. Appendix A covers all

instructions.

104 Chapter 2 Instructions: Language of the Computer

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits
R-format op rs rt rd shamt funct Arithmetic instruction format
|-format op rs rt address/immediate Transfer, branch, 1 mm. format
J-format op target address Jump instruction format

FIGURE 2.26 MIPS instruction formats in Chapter 2. Highlighted portions show instruction formats introduced
in this section.

Check What is the range of addresses for conditional branches in MIPS (K = 1024)?

Yourself Addresses between 0 and 64K — 1

Addresses between 0 and 256K — 1

Addresses up to about 32K before the branch to about 32K after
4. Addresses up to about 128K before the branch to about 128K after

What is the range of addresses for jump and jump and link in MIPS (M = 1024K)?

e b

Addresses between 0 and 64M — 1

Addresses between 0 and 256M — 1

Addresses up to about 32M before the branch to about 32M after
Addresses up to about 128M before the branch to about 128M after

L I L

Anywhere within a block of 64M addresses where the PC supplies the upper
6 bits

6. Anywhere within a block of 256M addresses where the PC supplies the
upper 4 bits

What is the MIPS assembly language instruction corresponding to the machine
instruction with the value 0000 0000,.,?

1.]

2. R-format

3. addi

4., sl]

5. mfcO

6. Undefined opcode: there is no legal instruction that corresponds to 0.

2.9 MIPS Addressing for 32-Bit Immediates and Addresses 105

MIPS operands

$s0-%$s7, $t0-$t9, $zero, $al- Fast locations for data. In MIPS, data must be in registers to perform arithmetic. MIPS
32 registers $a3, $vO-$vl, $agp, $fp, $sp, register $Zero always equals 0. Register $at is reserved for the assembler to handle
$ra, $at large constants.
239 memory Memory[O], Accessed only by data transfer instructions. MIPS uses byte addresses, so sequential
words Memory[4], .. ., word addresses differ by 4. Memory holds data structures, arrays, and spilled
Memory[4294967292] registers, such as those saved on procedure calls.

MIPS assembly language

add $s1,%s2,$s3 $51 =%s2 + $s3 Three register operands
Arithmetic subtract sub $s1,%s52,%s3 $s51 =$s2 - $s3 Three register operands
add immediate addi $s1,%$s2,100 $51 =%s2+ 100 Used to add constants
load word Tw $51,100(%s52) $51 = Memon{$s2 + 100] Word from memory to register
store word sw $s51,100(%s2) Memory[$s2 + 100] = $s1 Word from register to memory
load half Th $51,100(%s52) $51 = Memon{$s2 + 100] Halfword memory to register
Data transfer | store half sh $s51,100(%s2) Memory[$s2 + 100] = $s1 Halfword register to memory
load byte b $s1,100(%s2) $51 = Memony[$s52 + 100] Byte from memory to register
store byte sb $s51,100(%s2) Memory[$s2 + 100] = $s51 Byte from register to memory
load upper immed. Tui $s1,100 $c1 = 100 * 216 Loads constant in upper 16 bits
and and $s1,$s2,%$s3 $51 =%$s2 & $s3 Three reg. operands; bit-bybit AND
or or $51,%s52,%$s3 $51 =%$s2| $s53 Three reg. operands; bit-bybit OR
nor nor $s1,%s52,%s3 sl =~ (%52 [$53) Three reg. operands; bit-by-bit NOR
Logical and immediate andi $s1,%s52,100 $51 =$s2 & 100 Bit-by-bit AND reg with constant
or immediate ori $s51,%s52,100 $s1 =$s2| 100 Bit-by-bit OR reg with constant
shift left logical s11 $s1,%s52,10 $51 =$52 << 10 Shift left by constant
shift right logical sr1 $s51,%s52,10 $51 =$s52 >> 10 Shift right by constant
branch on equal beq $s1,%s2,25 if (51 ==$%52) go to Equal test; PC-relative branch
PC + 4 + 100
branch on not equal bne $s1,%s2,25 if (§s1!= $s2)goto Mot equal test; PC-relative
Conditional PC +4 + 100
branch set on less than s1t $sl1,%$s2,$s3 if (52 < $s3) $s1=1 Compare less than; for beq, bne
else $s1 =0
set Tess than s1ti $s1,%s2,100 if ($52 < 100) $s51 =1; Compare less than constant
immediate else $51 =0
, jump J 2500 go to 10000 Jump to target address
::gﬁ:;;np jump register jr fra goto $ra For switch, procedure return
jump and link jal 2500 $ra =PC + 4; go to 10000 For procedure call

FIGURE 2.27 MIPS assembly language revealed in Chapter 2. Highlighted portions show portions from Sections 2.8 and 2.9.

106

Chapter 2 Instructions: Language of the Computer

Translating and Starting a Program

This section describes the four steps in transforming a C program in a file on disk
into a program running on a computer. Figure 2.28 shows the translation hierar-
chy. Some systems combine these steps to reduce translation time, but these are
the logical four phases that programs go through. This section follows this trans-
lation hierarchy.

Assembly language program

I/_,_:-""
-EAssernbler

N

Object: Machine language module | | Object: Library routine (machine language)

e

Executable: Machine language program

CLoader >
N

Memory

FIGURE 2.28 A translation hierarchy for C. A high-level-language program is first compiled into
an assembly language program and then assembled into an object module in machine language. The linker
combines multiple modules with library routines to resolve all references. The loader then places the
machine code into the proper memory locations for execution by the processor. To speed up the translation
process, some steps are skipped or combined together. Some compilers produce object modules directly,
and some systems use linking loaders that perform the last two steps. To identify the type of file, UNIX fol-
lows a suffix convention for files: C source files are named x. C, assembly files are x. s, object files are
named X . 0, statically linked library routines are x . a, dynamically linked library routes are x .50, and exe-
cutable files by default are called a . out. MS-DOS uses the suffixes .C, .ASM, .0BJ, . LIE, .DLL,and .EXE
to the same effect.

2.10 Translating and Starting a Program

107

Compiler

The compiler transforms the C program into an assembly language program, a
symbolic form of what the machine understands. High-level-language programs
take many fewer lines of code than assembly language, so programmer productiv-
ity is much higher.

In 1975, many operating systems and assemblers were written in assembly lan-
guage because memories were small and compilers were inetficient. The 128,000-
fold increase in memory capacity per single DRAM chip has reduced program size
concerns, and optimizing compilers today can produce assembly language pro-
grams nearly as good as an assembly language expert, and sometimes even better
for large programs.

Assembler

As mentioned on page 96, since assembly language is the interface to higher-level soft-
ware, the assembler can also treat common variations of machine language instruc-
tions as if they were instructions in their own right. The hardware need not implement
these instructions; however, their appearance in assembly language simplifies transla-
tion and programming. Such instructions are called pseudoinstructions.

As mentioned above, the MIPS hardware makes sure that register $zero
always has the value 0. That is, whenever register $zero is used, it supplies a 0,
and the programmer cannot change the value of register $zero. Register $zero is
used to create the assembly language instruction move that copies the contents of
one register to another. Thus the MIPS assembler accepts this instruction even
though it is not found in the MIPS architecture:

move $t0,$tl i register $t0 gets register $tl

The assembler converts this assembly language instruction into the machine lan-
guage equivalent of the following instruction:

add $t0,%$zero,$tl 4 register $t0 gets 0 + register $tl

The MIPS assembler also converts b1t (branch on less than) into the two
instructions s1t and bne mentioned in the example on page 96. Other examples
include bgt, bge, and ble. It also converts branches to faraway locations into a
branch and jump. As mentioned above, the MIPS assembler allows 32-bit constants
to be loaded into a register despite the 16-bit limit of the immediate instructions.

In summary, pseudoinstructions give MIPS a richer set of assembly language
instructions than those implemented by the hardware. The only cost is reserving
one register, $at, for use by the assembler. If you are going to write assembly pro-
grams, use pseudoinstructions to simplify your task. To understand the MIPS

assembly language A sym-
bolic language that can be trans-
lated into binary.

pseudoinstruction A com-
mon variation of assembly lan-
guage instructions often treated
as if it were an instruction in its
own right.

108

Chapter 2 Instructions: Language of the Computer

machine language Binary
representation used for commu-
nication within a computer
system.

symbol table A table that
matches names of labels to the
addresses of the memory words
that instructions occupy.

architecture and to be sure to get best performance, however, study the real MIPS
instructions found in Figures 2.25 and 2.27.

Assemblers will also accept numbers in a variety of bases. In addition to binary
and decimal, they usually accept a base that is more succinct than binary yet con-
verts easily to a bit pattern. MIPS assemblers use hexadecimal,

Such features are convenient, but the primary task of an assembler is assembly
into machine code. The assembler turns the assembly language program into an
object file, which is a combination of machine language instructions, data, and
information needed to place instructions properly in memory.

To produce the binary version of each instruction in the assembly language pro-
gram, the assembler must determine the addresses corresponding to all labels.
Assemblers keep track of labels used in branches and data transter instructions in a
symbol table. As you might expect, the table contains pairs of symbol and address.

The object file for UNIX systems typically contains six distinct pieces:

B The object file header describes the size and position of the other pieces of
the object file.

B The text segment contains the machine language code.

B The static data segment contains data allocated for the life of the program.
(UNIX allows programs to use either static data, which is allocated through-
out the program, or dynamic data, which can grow or shrink as needed by
the program.)

B The relocation information identifies instructions and data words that
depend on absolute addresses when the program is loaded into memory.

B The symbol table contains the remaining labels that are not defined, such as
external references.

B The debugging information contains a concise description of how the mod-
ules were compiled so that a debugger can associate machine instructions
with C source files and make data structures readable.

The next subsection shows how to attach such routines that have already been
assembled, such as library routines.

Linker

What we have presented so far suggests that a single change to one line of one proce-
dure requires compiling and assembling the whole program. Complete retransla-
tion is a terrible waste of computing resources. This repetition is particularly
wasteful for standard library routines because programmers would be compiling
and assembling routines that by definition almost never change. An alternative is to

2.10 Translating and Starting a Program

109

compile and assemble each procedure independently, so that a change to one line

would require compiling and assembling only one procedure. This alternative

requires a new systems program, called a link editor or linker, which takes all the

independently assembled machine language programs and “stitches” them together.
There are three steps for the linker:

1. Place code and data modules symbolically in memory.
2. Determine the addresses of data and instruction labels.
3. Patch both the internal and external references.

The linker uses the relocation information and symbol table in each object
module to resolve all undefined labels. Such references occur in branch instruc-
tions, jump instructions, and data addresses, so the job of this program is much
like that of an editor: It finds the old addresses and replaces them with the new
addresses. Editing is the origin of the name “link editor,” or linker for short. The
reason a linker makes sense is that it is much faster to patch code than it is to
recompile and reassemble.

If all external references are resolved, the linker next determines the memory
locations each module will occupy. Recall that Figure 2.17 on page 87 shows the
MIPS convention for allocation of program and data to memory. Since the files
were assembled in isolation, the assembler could not know where a module’s
instructions and data will be placed relative to other modules. When the linker
places a module in memory, all absolute references, that is, memory addresses that
are not relative to a register, must be relocated to reflect its true location.

The linker produces an executable file that can be run on a computer. Typi-
cally, this file has the same format as an object file, except that it contains no unre-
solved references. It is possible to have partially linked files, such as library
routines, which still have unresolved addresses and hence result in object files.

I —————————————————————————————————
Linking Object Files

Link the two object files below. Show updated addresses of the first few in-
structions of the completed executable file. We show the instructions in as-
sembly language just to make the example understandable; in reality, the
instructions would be numbers.

Note that in the object files we have highlighted the addresses and symbols
that must be updated in the link process: the instructions that refer to the
addresses of procedures A and B and the instructions that refer to the
addresses of data words X and Y.

linker Also called link editor.
A systems program that com-
bines independently assembled
machine language programs and
resolves all undefined labels into
an executable file.

executable file A functional
program in the format of an
object file that contains no unre-
solved references, relocation
information, symbol table, or
debugging information.

110 Chapter 2 Instructions: Language of the Computer

Object file header

Name Procedure A
Text size 100, .,
Data size 201ax
Text segment Address Instruction
0 1w $a0, O($ap)
4 jal 0
Data segment 0 (X
Relocation information Address Instruction type Dependency
0 Tw X
4 Jal B
Symbol table Label Address
X —
B —
Object file header
Name Procedure B
Text size 200,
Data size 30pex
Text segment Address Instruction
0 sw $al, O($ap)
4 jalao
Data segment O (Y
Relocation information Address Instruction type Dependency
0 SW f
4 jal A
Symbol table Label Address
L —_
A -

Procedure A needs to find the address for the variable labeled X to put in the

load instruction and to find the address of procedure B to place in the jal in-
struction. Procedure B needs the address of the variable labeled Y for the

store instruction and the address of procedure A for its jal instruction.

From Figure 2.17 on page 87, we know that the text segment starts at address
40 0000},.« and the data segment at 1000 0000,,.,. The text of procedure A is
placed at the first address and its data at the second. The object file header for pro-
cedure A says that its text is 100y, bytes and its data is 20y, bytes, so the starting ad-
dress for procedure B textis 40 0100,,.,, and its data starts at 1000 0020,,,.

2.10 Translating and Starting a Program

111

Executable file header
Text size 300z,
Data size 50 ex
Text segment Address Instruction
0040 0000, 1w $a0, B000,.,(%$gp)
0040 0004, ., jal 40 0100,
0040 0100, sw $al, 8020,.,.(%gp)
0040 0104, jal 40 0000,
Data segment Address
1000 0000, 4 (X)
1000 0020, o (Y)

From Figure 2.17 on page 87, we know that the text segment starts at address
40 000040, and the data segment at 1000 0000,,.,. The text of procedure A
is placed at the first address and its data at the second. The object file header
for procedure A says that its text is 100, bytes and its data is 20, bytes, so
the starting address for procedure B text is 40 0100, .,, and its data starts at
1000 0020},

Now the linker updates the address fields of the instructions. It uses the
instruction type field to know the format of the address to be edited. We have
two types here:

1. The jals are easy because they use pseudodirect addressing. The jal at
address 40 0004,,., gets 40 0100, ., (the address of procedure B) in its
address held, and the jal at 40 0104, ., gets 40 0000,,., (the address

of procedure A) in its address field.

2. The load and store addresses are harder because they are relative to a
base register. This example uses the global pointer as the base register.
Figure 2.17 shows that $gp is initialized to 1000 8000,,. To get the
address 1000 0000,o4 (the address of word X), we place 8000y, in the
address field of 1w at address 40 0000,.,. Chapter 3 explains 16-bit
two’s complement computer arithmetic, which is why 8000, in the
address field yields 1000 0000,,., as the address. Similarly, we place
8020y, in the address field of sw at address 40 0100,., to get the
address 1000 0020,., (the address of word Y).

112

Chapter 2 Instructions: Language of the Computer

loader A systems program that
places an object program in
main memory so that it is ready
to execute.

Loader

Now that the executable file is on disk, the operating system reads it to memory
and starts it. [t follows these steps in UNIX systems:

I. Reads the executable file header to determine size of the text and data segments.

Creates an address space large enough for the text and data.

L I

Copies the instructions and data from the executable file into memory.

L

Copies the parameters (if any) to the main program onto the stack.

N

[nitializes the machine registers and sets the stack pointer to the first free
location.

6. Jumps to a start-up routine that copies the parameters into the argument reg-
isters and calls the main routine of the program. When the main routine
returns, the start-up routine terminates the program with an exit system call.

Sections A.3 and A.4 in @ Appendix A describe linkers and loaders in more
detail.

Dynamically Linked Libraries

The first part of this section describes the traditional approach to linking libraries
before the program is run. Although this static approach is the tastest way to call
library routines, it has a few disadvantages:

B The library routines become part of the executable code. If a new version of
the library is released that fixes bugs or supports new hardware devices, the
statically linked program keeps using the old version.

B [t loads the whole library even if all of the library is not used when the pro-

gram is run. The library can be large relative to the program; for example,
the standard C library is 2.5 MB.

These disadvantages lead to dynamically linked libraries (DLLs), where the
library routines are not linked and loaded until the program is run. Both the pro-
gram and library routines keep extra information on the location of nonlocal pro-
cedures and their names. In the initial version of DLLs, the loader ran a dynamic
linker, using the extra information in the file to find the appropriate libraries and
to update all external references.

The downside of the initial version of DLLs was that it still linked all routines of
the library that might be called versus those that are called during the running of
the program. This observation led to the lazy procedure linkage version of DLLs,
where each routine is linked only after it is called.

2.10 Translating and Starting a Program

Text Text

jal o jal O
— - - — | L-* P
L-] W Tw

jr o jr ®

Data Data

= o o—

Text
11 10
J ®

L Tor
Dynamic Linker/Loader

Remap DLL Routine
! s
L Data/Text Text
DLL Routine = DLL Routine
jr . jr i
(a) First call to DLL routine (b) Subsequent calls to DLL routine

FIGURE 2.29 Dynamically linked library via lazy procedure linkage. (a) Steps for the first
time a call is made to the DLL routine. (b) The steps to find the routine, remap it, and link it are skipped on
subsequent calls. As we will see in Chapter 7, the operating system may avoid copying the desired routine by
remapping it using virtual memory management.

Like many instances in our field, this trick relies on a level of indirection. Figure
2.29 shows the technique. It starts with the nonlocal routines calling a set of
dummy routines at the end of the program, with one entry per nonlocal routine.
These dummy entries each contain an indirect jump.

The first time the library routine is called, the program calls the dummy entry
and follows the indirect jump. It points to code that puts a number in a register to
identify the desired library routine and then jumps to the dynamic linker-loader.

114

Chapter 2 Instructions: Language of the Computer

Java bytecode Instruction
from an instruction set designed
to interpret Java programs.

The linker-loader finds the desired routine, remaps it, and changes the address in
the indirect jump location to point to that routine. It then jumps to it. When the
routine completes, it returns to the original calling site. Thereafter, it jumps indi-
rectly to the routine without the extra hops.

In summary, DLLs require extra space for the information needed for dynamic
linking, but do not require that whole libraries be copied or linked. They pay a
good deal of overhead the first time a routine is called, but only a single indirect
jump thereafter. Note that the return from the library pays no extra overhead.
Microsoft’s Windows relies extensively on lazy dynamically linked libraries, and it
is also the normal way of executing programs on UNIX systems today.

Starting a Java Program

The discussion above captures the traditional model of executing a program,
where the emphasis is on fast execution time for a program targeted to a specific
instruction set architecture, or even a specific implementation of that architec-
ture. Indeed, it is possible to execute Java programs just like C. Java was invented
with a different set of goals, however. One was to quickly run safely on any com-
puter, even if it might slow execution time.

Figure 2.30 shows the typical translation and execution steps for Java. Rather
than compile to the assembly language of a target computer, Java is compiled
first to instructions that are easy to interpret: the Java bytecode instruction set.
This instruction set is designed to be close to the Java language so that this com-

Java program
Compier >

Class files (Java bytecodes) | | Java Library routines (machine language)

4 N
Q JustInTime ™ joua Virtual Machin;,a
__compiler =

_ /
Compiled Java methods (machine language)

FIGURE 2.30 A translation hierarchy for Java. A Java program is first compiled into a binary version
of Java bytecodes, with all addresses defined by the compiler. The Java program is now ready to run on the
interpreter, called the Java Virtual Machine (JVM). The JVM links to desired methods in the Java library while
the program is running. To achieve greater performance, the JVM can invoke the Just In Time (JIT) compiler,
which selectively compiles methods into the native machine language of the machine on which it is running.

2.10 Translating and Starting a Program

115

pilation step is trivial. Virtually no optimizations are performed. Like the C
compiler, the Java compiler checks the types of data and produces the proper
operation for each type. Java programs are distributed in the binary version of
these bytecodes.

A software interpreter, called a Java Virtual Machine (JVM), can execute Java
bytecodes. An interpreter is a program that simulates an instruction set architec-
ture. For example, the MIPS simulator used with this book is an interpreter. There
is no need for a separate assembly step since either the translation is so simple that
the compiler fills in the addresses or JVM finds them at runtime.

The upside of interpretation is portability. The availability of software Java vir-
tual machines meant that most could write and run Java programs shortly after
Java was announced. Today Java virtual machines are found in millions of devices,
in everything from cell phones to Internet browsers.

The downside of interpretation is low performance. The incredible advances in
performance of the 1980s and 1990s made interpretation viable for many impor-
tant applications, but the factor of 10 slowdown when compared to traditionally
compiled C programs made Java unattractive for some applications.

To preserve portability and improve execution speed, the next phase of Java
development was compilers that translated while the program was running. Such
Just In Time compilers (JIT) typically profile the running program to find where
the “hot” methods are, and then compile them into the native instruction set on
which the virtual machine is running. The compiled portion is saved for the next
time the program is run, so that it can run faster each time it is run. This balance
of interpretation and compilation evolves over time, so that frequently run Java
programs suffer little of the overhead of interpretation.

As computers get faster so that compilers can do more, and as researchers
invent betters ways to compile Java on the fly, the performance gap between Java
and C or C++ is closing. Section 2.14 goes into much greater depth on the imple-
mentation of Java, Java bytecodes, JVM, and JIT compilers.

Which of the advantages of an interpreter over a translator do you think was most
important for the designers of Java?

1. Ease of writing an interpreter
2. Better error messages
3. Smaller object code

4. Machine independence

Java Virtual Machine
(JVM) The program that
interprets Java bytecodes.

Just In Time Compiler

(JIT) The name commonly
given to a compiler that operates
at runtime, translating the inter-
preted code segments into the
native code of the computer.

Check
Yourself

116

Chapter 2 Instructions: Language of the Computer

How Compilers Optimize

Because the compiler will significantly attect the performance of a computer, under-
standing compiler technology today is critical to understanding performance. The
purpose of this section is to give a brief overview of optimizations a compiler uses to
achieve performance. The following section introduces the internal anatomy of a
compiler. To start, Figure 2.31 shows the structure of recent compilers, and we
describe the optimizations in the order of the passes of that structure.

High-Level Optimizations

High-level optimizations are transformations that are done at something close to
the source level.

The most common high-level transtformation is probably procedure inlining,
which replaces a call to a function by the body of the function, substituting the
caller’s arguments for the procedure’s parameters. Other high-level optimizations

Dependencies Function
Language dependent; Transform language to
machine independent common intermediate form

Front end per
language

Intermediate
representation

For example, loop
transformations and
procedure inlining
(also called
procedure integration)

Somewhat language dependent;

largely machine independent High-level

optimizations

Including global and local
optimizations + register
allocation

Small language dependencies;
machine dependencies slight
(e.q., register counts/types)

Global
optimizer

. Code generator -

FIGURE 2.31 The structure of a modern optimizing compiler consists of a numbers of
passes or phases. Logically each pass can be thought of as running to completion betfore the
next occurs. In practice, some passes may handle a procedure at a time, essentially interleaving
with another pass.

Detailed instruction selection
and machine-dependent
optimizations; may include
or be followed by assembler

Highly machine dependent;
language independent

2.11 How Compilers Optimize

117

involve loop transformations that can reduce loop overhead, improve memory
access, and exploit the hardware more effectively. For example, in loops that execute
many iterations, such as those traditionally controlled by a for statement, the opti-
mization of loop unrolling is often useful. Loop unrolling involves taking a loop
and replicating the body multiple times and executing the transformed loop fewer
times. Loop unrolling reduces the loop overhead and provides opportunities for
many other optimizations. Other types of high-level transformations include
sophisticated loop transformations such as interchanging nested loops and blocking
loops to obtain better memory behavior; see Chapter 7 for examples.

Local and Global Optimizations

Within the pass dedicated to local and global optimization, three classes of opti-
mizations are performed:

1. Local optimization works within a single basic block. A local optimization
pass is often run as a precursor and successor to global optimization to
“clean up” the code before and after global optimization.

2. Global optimization works across multiple basic blocks; we will see an
example of this shortly.

3. Global register allocation allocates variables to registers for regions of the
code. Register allocation is crucial to getting good performance in modern
processors.

Several optimizations are performed both locally as well as globally, including
common subexpression elimination, constant propagation, copy propagation,
dead store elimination, and strength reduction. Let’s look at some simple exam-
ples of these optimizations.

Common subexpression elimination inds multiple instances of the same expres-
sion and replaces the second one by a reference to the first. Consider, for example,
a code segment to add 4 to an array element:

x[1] = x[1] + 4

The address calculation for x[1] occurs twice and is identical since neither the
starting address of x nor the value of i changes. Thus, the calculation can be reused.
Let’s look at the intermediate code for this fragment, since it allows several other
optimizations to be performed. Here is the unoptimized intermediate code on the
left, and on the right is the code with common subexpression elimination replacing
the second address calculation with the first. Note that the register allocation has not
yet occurred, so the compiler is using virtual register numbers like R100 here.

loop unrolling A technique to
get more performance from
loops that access arrays, in
which multiple copies of the
loop body are made and instruc-
tions from different iterations
are scheduled together.

118

Chapter 2 Instructions: Language of the Computer

F x[1] + 4 iF x[1] + 4

11 R100,x 17 R100,x

Iw R101,1 lw R101,1

mult R102,R101,4 mult R102,R101,4
add R103,R100,R102 add R103,R100,R102
Tw R104,0(R103) Ilw R104,0(R103)

value of x[i] is in R104 # value of x[i] is in R104
add R105,R104,4 add R105,R104,4

x[1] = f x[i] =

11 R106,x sw R105,0(R103)

Iw R107,1

mult R108,R107,4
add R109,R106,R10/
sw R105,0(R109)

[f the same optimization was possible across two basic blocks, it would then be an
instance of global common subexpression elimination.
Let’s consider some of the other optimizations:

Strength reduction replaces complex operations by simpler ones and can be
applied to this code segment, replacing the mult by a shitt left.

Constant propagation and its sibling constant folding find constants in code
and propagates them, collapsing constant values whenever possible.

Copy propagation propagates values that are simple copies, eliminating the
need to reload values and possibly enabling other optimizations such as
common subexpression elimination.

Dead store elimination finds stores to values that are not used again and
eliminates the store; its “cousin” is dead code elimination, which finds
unused code—code that cannot affect the final result of the program—and
eliminates it. With the heavy use of macros, templates, and the similar tech-
niques designed to reuse code in high-level languages, dead code occurs sur-
prisingly often.

2.11 How Compilers Optimize

119

Programmers concerned about performance of critical loops, especially in real-
time or embedded applications, often find themselves staring at the assembly lan-
guage produced by a compiler and wondering why the compiler failed to perform
some global optimization or to allocate a variable to a register throughout a loop.
The answer often lies in the dictate that the compiler be conservative. The oppor-
tunity for improving the code may seem obvious to the programmer, but then the
programmer often has knowledge that the compiler does not have, such as the
absence of aliasing between two pointers or the absence of side effects by a func-
tion call. The compiler may indeed be able to perform the transformation with a
little help, which could eliminate the worst-case behavior that it must assume.
This insight also illustrates an important observation: programmers who use
pointers to try to improve performance in accessing variables, especially pointers
to values on the stack that also have names as variables or as elements of arrays,
are likely to disable many compiler optimizations. The end result is that the lower-
level pointer code may run no better, or perhaps even worse, than the higher-level
code optimized by the compiler.

Compilers must be conservative. The first task of a compiler is to produce
correct code; its second task is usually to produce fast code although other fac-
tors such as code size may sometimes be important as well. Code that is fast but
incorrect—tfor any possible combination of inputs—is simply wrong. Thus,
when we say a compiler is “conservative,” we mean that it performs an optimiza-
tion only if it knows with 100% certainty that, no matter what the inputs, the
code will perform as the user wrote it. Since most compilers translate and opti-
mize one function or procedure at a time, most compilers, especially at lower
optimization levels, assume the worst about function calls and about their own
parameters.

Global Code Optimizations

Many global code optimizations have the same aims as those used in the local
case, including common subexpression elimination, constant propagation, copy
propagation, and dead store and dead code elimination.

There are two other important global optimizations: code motion and induc-
tion variable elimination. Both are loop optimizations; that is, they are aimed at
code in loops. Code motion finds code that is loop invariant: a particular piece of
code computes the same value on every loop iteration and, hence, may be com-
puted once outside the loop. Induction variable elimination is a combination of

Understanding
Program
Performance

120

Chapter 2 Instructions: Language of the Computer

transformations that reduce overhead on indexing arrays, essentially replacing
array indexing with pointer accesses. Rather than examine induction variable
elimination in depth, we point the reader to Section 2.15, which compares the
use of array indexing and pointers; for most loops, the transformation from the
more obvious array code to the pointer code can be performed by a modern
optimizing compiler.

Optimization Summary

Figure 2.32 gives examples of typical optimizations, and the last column indi-
cates where the optimization is performed in the gcc compiler. It is sometimes
difficult to separate some of the simpler optimizations—Ilocal and processor-
dependent optimizations—from transformations done in the code generator,
and some optimizations are done multiple times, especially local optimizations,
which may be performed before and after global optimization as well as during
code generation.

High level At or near the source level; processor independent

Procedure integration Replace procedure call by procedure body 03

Local Within straight-line code

Common subexpression elimination Replace two instances of the same computation by single copy 01

Constant propagation Replace all instances of a variable that is assigned a constant with the 01
constant

Stack height reduction Rearrange expression tree to minimize resources needed for expression 01
evaluation

Global Across a branch

Global common subexpression elimination | Same as local, but this version crosses branches 02

Copy propagation Replace all instances of a variable A that has been assigned X (i.e., A= X) with X 02

Code motion Remove code from a loop that computes same value each iteration of the loop 02

Induction variable elimination Simplify/eliminate array addressing calculations within loops 02

Processor dependent Depends on processor knowledge

Strength reduction Many examples; replace multiply by a constant with shifts 01

Pipeline scheduling Reorder instructions to improve pipeline performance 01

Branch offset optimization Choose the shortest branch displacement that reaches target 01

FIGURE 2.32 Major types of optimizations and examples in each class. The third column shows when these occur at different
levels of optimization in gcc. The Gnu organization calls the three optimization levels medium (O1), full (O2), and full with integration of

small procedures (O3).

2.12 A C Sort Example to Put It All Together

121

Today essentially all programming for desktop and server applications is done in
high-level languages, as is most programming for embedded applications. This
development means that since most instructions executed are the output of a
compiler, an instruction set architecture is essentially a compiler target. With
Moore’s law comes the temptation of adding sophisticated operations in an
instruction set. The challenge is that they may not exactly match what the com-
piler needs to produce or be so general that they aren’t fast. For example, consider
special loop instructions found in some computers. Suppose that instead of decre-
menting by one, the compiler wanted to increment by four, or instead of branch-
ing on not equal zero, the compiler wanted to branch if the index was less than or
equal to the limit. The loop instruction may be a mismatch. When faced with such
objections, the instruction set designer might then generalize the operation, add-
ing another operand to specify the increment and perhaps an option on which
branch condition to use. Then the danger is that a common case, say, increment-
ing by one, will be slower than a sequence of simple operations.

How Compilers Work:
.12 An Introduction

The purpose of this section is to give a brief overview of the compiler function,
which will help the reader understand both how the compiler translates a high-
level language program into machine instructions. Keep in mind that the subject
of compiler construction is usually taught in a one- or two-semester course; our

introduction will necessarily only touch on the basics. The rest of this section is on
the CD.

A C Sort Example to Put It All Together

One danger ot showing assembly language code in snippets is that you will have
no idea what a full assembly language program looks like. In this section, we
derive the MIPS code from two procedures written in C: one to swap array ele-
ments and one to sort them.

Hardware
Software
Interface

122

Chapter 2 Instructions: Language of the Computer

The Procedure swap

Let’s start with the code for the procedure swap in Figure 2.33. This procedure
simply swaps two locations in memory. When translating from C to assembly lan-
guage by hand, we follow these general steps:

1. Allocate registers to program variables.
2. Produce code for the body of the procedure.
3. Preserve registers across the procedure invocation.

This section describes the swap procedure in these three pieces, concluding by
putting all the pieces together.

Register Allocation for swap

As mentioned on page 79, the MIPS convention on parameter passing is to use
registers $a0, $al, $a2, and $a3. Since swap has just two parameters, v and k,
they will be found in registers $a0 and $al. The only other variable is temp,
which we associate with register $t 0 since swap is a leaf procedure (see page 83).
This register allocation corresponds to the variable declarations in the first part of
the swap procedure in Figure 2.33.

Code for the Body of the Procedure swap

The remaining lines of C code in swap are

temp = v[k];
vlk] = v[k+1]1;
vLk+1] = temp;

Recall that the memory address for MIPS refers to the byte address, and so
words are really 4 bytes apart. Hence we need to multiply the index k by 4 before

void swap(int v[], int k)
{

int temp;

temp = v[k];

vik] = v[k+1];

vik+1] = temp;

}

FIGURE 2.33 A C procedure that swaps two locations in memory. The next subsection uses
this procedure in a sorting example.

2.12 A C Sort Example to Put It All Together

123

adding it to the address. Forgetting that sequential word addresses differ by 4 instead
of by 1 is a common mistake in assembly language programming. Hence the first step
is to get the address of v[k] by multiplying k by 4:

5111 $tl, %$al,? if reg $t1 = k * 4
add $t1, $a0,%tl # reg $t1 = v + (k * 4)
i reg $t1 has the address of v[k]

Now we load v[k] using $t1, and then v[k+1] by adding 4 to $t1:

Tw $t0, O($t1l) if reg $t0 (temp) = v[k]
Tw $t2, 4($t1) # reg $t2 = v[k + 1]
#F refers to next element of v

Next we store $t0 and $t2 to the swapped addresses:

SW $t2, 0($tl) # vlk]l = reg $t2
SW $t0, 4($tl1) # vik+1l] = reg $t0 (temp)

Now we have allocated registers and written the code to perform the operations
of the procedure. What is missing is the code for preserving the saved registers
used within swap. Since we are not using saved registers in this leat procedure,
there is nothing to preserve.

The Full swap Procedure

We are now ready for the whole routine, which includes the procedure label and

the return jump. To make it easier to follow, we identity in Figure 2.34 each block
of code with its purpose in the procedure.

The Procedure sort

To ensure that you appreciate the rigor of programming in assembly language,
we'll try a second, longer example. In this case, we'll build a routine that calls the
swap procedure. This program sorts an array of integers, using bubble or
exchange sort, which is one of the simplest if not the fastest sorts. Figure 2.35
shows the C version of the program. Once again, we present this procedure in sev-
eral steps, concluding with the full procedure.

Register Allocation for sort

The two parameters of the procedure sort, v and n, are in the parameter registers
$a0 and $al, and we assign register $s0 to i and register $s1 to J.

124

Chapter 2 Instructions: Language of the Computer

Procedure hody

swap: s11 $tl, $al, 2 j‘reg ftl=k *4
add $t1, $a0, $t1 Freg$tl=v+(k*4)
if reg $t1 has the address of v[k]
Tw $t0, O($t1) i reg $t0 (temp) = v[k]
Tw $t2, 4($t1) #Fregst2=vlk+1]
i refers tonext element of v
SW $t2, 0(%t1) #Fv[lk] =reg $t?
SW $t0, 4(%t1) #Fvlk+l]l=reqg $t0 (temp)
jr $ra # return tocalling routine

FIGURE 2.34 MIPS assembly code of the procedure swap in Figure 2.33.

void sort (int v[], int n)
{
int 1, J;
for (i =0; i < n; i +=1) {
for (j =1 -1; jJ »>=0 & v[j] > v[j +1]:] =1) {
swap(v,]);

}

FIGURE 2.25 A C procedure that performs a sort on the array v.

Code for the Body of the Procedure sort

The procedure body consists of two nested for loops and a call to swap that
includes parameters. Let’s unwrap the code from the outside to the middle.
The first translation step is the first for loop:

for (i =0; i < n; i+=1) {

Recall that the C for statement has three parts: initialization, loop test, and itera-
tion increment. It takes just one instruction to initialize i to 0, the first part of the
for statement:

move $s0, $zero # i =20

(Remember that move is a pseudoinstruction provided by the assembler for the
convenience of the assembly language programmer; see page 107.) It also takes
just one instruction to increment 1, the last part of the for statement:

addi $s0, 3$s0, 1 #F i +=1

2.13 A C Sort Example to Put It All Together 125

The loop should be exited if i < n is not true or, said another way, should be exited
if 1 = n. The set on less than instruction sets register $t0to 1 if $s0 < $al and 0
otherwise. Since we want to test if $s0 = $al, we branch if register $t0 is 0. This
test takes two instructions:

forltst:s1t $t0, $s0, $al # reg $t0 =0 if $s0 = $al (i=n)
beq $t0, $zero,exitl # go to exitl if $s0=%al (i=n)

The bottom of the loop just jumps back to the loop test:

j forltst # jump to test of outer Tloop
exitl:

The skeleton code of the first for loop is then

move $s0, $zero #1i=20
forltst:slt $t0, $s0, $al 4 reg $t0 =0 if $s0 = $al (i=n)
beq $t0, $zero,exitl # go to exitl if $s0=%$al (i=n)

(body of first for Toop)

addi $s0, $s0, 1 #1+=1
] forltst # jump to test of outer Toop
exitl:

Voila! Exercise 2.14 explores writing faster code for similar loops.
The second for loop looks like this in C:

for (j =1 -1; jJ >=0 && v[jl > v[j +11; j -=1) {
The initialization portion of this loop is again one instruction:

addi $s1, $s0, -1 # j =1 -1

The decrement of j at the end of the loop is also one instruction:

addi $s1, $s1, -1 # j =1

The loop test has two parts. We exit the loop if either condition fails, so the first
test must exit the loop if it fails (j < 0):

for2tst:s1ti$t0, $s1, O # reg $t0 =1 if $s1 < 0 (j < 0)
bne $t0, $zero, exit? # go to exitZ if $s1<0 (j < 0)

This branch will skip over the second condition test. If it doesn’t skip, j = 0.

The second test exits if v[j] > v[j + 1] is nottrue, orexitsit v[j] <
v[j + 11].First we create the address by multiplying j by 4 (since we need a byte
address) and add it to the base address of v:

126

Chapter 2 Instructions: Language of the Computer

511 $tl1, $s1,2 if reg $t1 = j * 4

add $t2, %$a0,$tl # reg $t2 = v + (j * 4)
Now we load v[j]:

1w $t3, 0($t2) # reg $t3 = v[]j]

Since we know that the second element is just the following word, we add 4 to the
address in register §t2 toget v[j + 11:

Tw $td, 4($t2) 4 reg $t4 = v[j + 1]

The test of v[j] < v[j + 1]isthesameasv[j + 1] = v[j], so the two
instructions of the exit test are

s1t $t0, $t4, $t3 # reg $t0 =0 if $t4 > §$t3
beq $t0, $zero,exit?2 # go to exitz if $t4 = §t3

The bottom of the loop jumps back to the inner loop test:

j for2tst # jump to test of inner Toop

Combining the pieces together, the skeleton of the second for loop looks like
this:

addi $s1, $s0, -1 i=1-1

for2tst:s1ti $t0, $s1, O #F reg $t0 =1 if $s1 < 0 (j<0)
bne $t0, $zero,exit? # go to exit? if $s1<0 (j<0)
s11 $t1, $s1,2 # reg $t1 =j * 4
add $tZ2, %$a0,%tl #F reg $t2 =v + (J * 4)
Tw $t3, 0($t2) # reg $t3 = v[j]
Tw $td, 4($t2) # reg $t4 = v[j + 1]

st $t0, $td, 3$t3 # reg $t0 = 0 if $t4 = $t3
beq $t0, $zero,exit? # go to exitZ if $t4 = $t3

(body of second for loop)

addi $s1, $s1, -1 #3i =1
J for2tst # jump to test of inner loop
exite:

The Procedure Call in sort
The next step is the body of the second for loop:

swap(v,]j);

2.13 A C Sort Example to Put It All Together 127

Calling swap is easy enough:

jal swap

Passing Parameters in sort

The problem comes when we want to pass parameters because the sort proce-
dure needs the values in registers $a0 and $al, yet the swap procedure needs to
have its parameters placed in those same registers. One solution is to copy the
parameters for sort into other registers earlier in the procedure, making registers
$a0 and $al available for the call of swap. (This copy is faster than saving and
restoring on the stack.) We first copy $a0 and $al into $s2 and $s3 during the

procedure:
move $s2, $al if copy parameter $a0 into $s?
move $s3, $al ## copy parameter $%$al into $s3

Then we pass the parameters to swap with these two instructions:

move a0, $s? i first swap parameter is v
move $al, $sl ## second swap parameter is j

Preserving Registers in sort

The only remaining code is the saving and restoring of registers. Clearly we must
save the return address in register $ra, since sort is a procedure and is called
itself. The sort procedure also uses the saved registers $s0, $s1, $s2, and $s3,
so they must be saved. The prologue of the sort procedure is then

addi $sp,$sp,-20 ## make room on stack for 5 regs
SW fra,l6($sp) # save $ra on stack
SW $s3,12(%$sp) # save $s3 on stack
SW $s2, 8(%$sp) # save $s2 on stack
SW $s1, 4(%$sp) # save $sl1 on stack
SW $s0, 0($sp) # save $s0 on stack

The tail of the procedure simply reverses all these instructions, then adds a jr to
return.

The Full Procedure sort

Now we put all the pieces together in Figure 2.36, being careful to replace refer-
ences to registers $a0 and $al in the for loops with references to registers $s2 and
$s3. Once again to make the code easier to follow, we identify each block of code
with its purpose in the procedure. In this example, 9 lines of the sort procedure
in C became 35 lines in the MIPS assembly language.

128

Chapter 2

Instructions: Language of the Computer

Saving registers

sort: addi $sp,$sp, -20 j# make roomon stack for 5 registers
SW $ra, 16($sp) if save $ra on stack
SW $s3,12(%sp) i save $s3 on stack
SW $s2, 8(%sp) # save $s2 on stack
SW $s1, 4(%$sp) i save $s1 on stack
SW $s0, 0($sp) # save $s0 on stack

Procedure body

Move parameters move $s2, $al #f copy parameter $a0 into $s2 (save $a0)
move $s3, $al if copy parameter $al into $s3 (save $al)
move $s0, $zero #i=0

Outer loop forltst:slt $t0, $s0, $s3 #f reg$t0=01if $50= $s3 (izn)
beq $t0, $zero, exitl Fgotoexitl if $s0=%s3 (i=n)
addi $s1, $s0, -1 #i=1-1

forZtst:s1ti $t0, $s51, 0 #Freg$td=11if$s1<0(]<0)
bre $t0, $zero, exit?2 {fgotoexit? if $s1<0(J<0)
511 $t1, $s1, 2 #fregstl=j=*4
Inner loop add $t2, $s2, $t1 Fregstz=v+(j*4)
Tw $t3, 0(%t2) #Freg$t3d =v[j]
Tw $td, 4(%t2) #Freg$td =v[j+1]
51t $t0, $td, $t3 #Freg$tO=01if $td=$t3
beq $t0, $zero, exit?2 {fgotoexit? if $t4d= $t3
move $al, $s2 # 1st parameter of swap is v (old $a0)

Pass parameters C

and call move $al, $s1 # 2nd parameter of swap is j
jal swap if swap code shown in Figure 2.34

Inner loop addi $s1, $s1, -1 iFJ-=
N for2tst # jump to test of inner loop

Outer loop exit?: addi $s0, $s0, 1 #i+=1
j forltst # jump to test of outer Toop

Restoring registers

exitl: Tw $s0, O($sp) jf restore $s0 from stack
Tw $s1, 4(%$sp) j#f restore $s1 fromstack
Tw $s2, B($sp) if restore $s2 from stack
Tw $s3,12(%sp) jf restore $s3 from stack
Tw tra,l6(%sp) # restore $ra fromstack
addi $sp,$sp, 20 # restore stack pointer

Procedure return

jr

$ra

returnto calling routine

FIGURE 2.36 MIPS assembly version of procedure sort in Figure 2.35 on page 124.

Elaboration: One optimization that works with this example is procedure inlining,
mentioned in Section 2.11. Instead of passing arguments in parameters and invoking
the code with a jal instruction, the compiler would copy the code from the body of the
swap procedure where the call to swap appears in the code. Inlining would avoid four

2.13 A C Sort Example to Put It All Together 129

instructions in this example. The downside of the inlining optimization is that the com-
piled code would be bigger if the inlined procedure is called from several locations.
Such a code expansion might turn into lower performance if it increased the cache miss
rate; see Chapter 7.

The MIPS compilers always save room on the stack for the arguments in case they
need to be stored, so in reality they always decrement $sp by 16 to make room for all
four argument registers (16 bytes). One reason is that C provides a vararg option that
allows a pointer to pick, say, the third argument to a procedure. When the compiler

encounters the rare vararg, it copies the four argument registers onto the stack into
the four reserved locations.

Figure 2.37 shows the impact of compiler optimization on sort program perfor- Understanding
mance, compile time, clock cycles, instruction count, and CPI. Note that unopti- Program
mized code has the best CPI and Ol optimization has the lowest instruction
count, but O3 is the fastest, reminding us that time is the only accurate measure of Performance
program performance.
Figure 2.38 compares the impact of programming languages, compilation
versus interpretation, and algorithms on performance of sorts. The fourth col-
umn shows that the unoptimized C program is 8.3 times faster than the inter-
preted Java code for Bubble Sort. Using the Just In Time Java compiler makes
Java 2.1 times faster than the unoptimized C and within a factor of 1.13 of the
highest optimized C code. (The next section gives more details on interpreta-
tion versus compilation of Java and the Java and MIPS code for Bubble Sort.)
The ratios aren’t as close for Quicksort in column 5, presumably because it is
harder to amortize the cost of runtime compilation over the shorter execution
time. The last column demonstrates the impact of a better algorithm, offering
three orders of magnitude performance increase when sorting 100,000 items.
Even comparing interpreted Java in column 5 to the C compiler at highest opti-
mization in column 4, Quicksort beats Bubble Sort by a factor of 50 (0.05 x
2468 or 123 versus 2.41).

Relative Clock cycles | Instruction count
gcc optimization performance (millions) o HUTLEY

none 1.00 158,615 114,938
01 (medium) 2.37 66,990 37,470 1.79
02 (full) 2.38 66,521 39,993 1.66
03 (procedure integration) 2.41 65,747 44,993 1.46

FIGURE 2.37 Comparing performance, instruction count, and CPI using compiler optimi-
zation for Bubble Sort. The programs sorted 100,000 words with the array initialized to random values.
These programs were run on a Pentium 4 with a clock rate of 3.06 GHz and a 533 MHz system bus with 2
GB of PC2100 DDR SDRAM memory. It used Linux version 2.4.20.

130

Chapter 2 Instructions: Language of the Computer

Bubble Sort relative Quicksort relative
Execution method Optimization performance performance

c

Speedup Quicksort
vs. Bubble Sort
2468

compiler none 1.00 1.00
compiler 01 2.37 1.50 1562
compiler 02 2.38 1.50 1555
compiler 03 2.41 1.91 1955
Java interpreter —_ 0.12 0.05 1050
Just In Time compiler —_ 2.13 0.29 338

FIGURE 2.38 Performance of two sort algorithms in C and Java using interpretation and optimizing compilers relative to
unoptimized C version. The last column shows the advantage in performance of Quicksort over Bubble Sort for each language and execution
option. These programs were run on the same system as Figure 2.37. The JVM is Sun version 1.3.1, and the JIT is Sun Hotspot version 1.3.1.

object-oriented language A
programming language that is
oriented around objects rather
than actions, or data versus

logic.

Implementing an Object-Oriented

Language

This section is for readers interested in seeing how an objected-oriented language
like Java executes on a MIPS architecture. It shows the Java bytecodes used for
interpretation and the MIPS code for the Java version of some of the C segments
in prior sections, including Bubble Sort. The rest of this section is on the CD.

Arrays versus Pointers

A challenging topic for any new programmer is understanding pointers. Compar-
ing assembly code that uses arrays and array indices to the assembly code that uses
pointers offers insights about pointers. This section shows C and MIPS assembly
versions of two procedures to clear a sequence of words in memory: one using
array indices and one using pointers. Figure 2.39 shows the two C procedures.

The purpose of this section is to show how pointers map into MIPS instructions,
and not to endorse a dated programming style. We’'ll see the impact of modern com-
piler optimization on these two procedures at the end of the section.

Array Version of Clear

Let’s start with the array version, clearl, focusing on the body of the loop and
ignoring the procedure linkage code. We assume that the two parameters array and
size are found in the registers $a0 and $al, and that i is allocated to register $ t0.

2.15 Arrays versus Pointers

131

clearl(int arrayl[], int size)
{
int 1;
for (i = 0; i € size; i += 1)
array[1] = 0;

}
clear2(int %array, int size)
{
int #p;
for (p = &array[0]; p < &arrayl[sizel]l; p=p + 1)
*p = 0;
}

FIGURE 2.39 Two C procedures for setting an array to all zeros. Clearl uses indices, while
cleard uses pointers. The second procedure needs some explanation for those unfamiliar with C. The
address of a variable is indicated by &, and referring to the object pointed to by a pointer is indicated by *.
The declarations declare that array and p are pointers to integers. The first part of the for loopin clear?
assigns the address of the first element of array to the pointer p. The second part of the for loop tests to
see If the pointer is pointing beyond the last element of array. Incrementing a pointer by one, in the last
part of the for loop, means moving the pointer to the next sequential object of its declared size. Since p is a
pointer to integers, the compiler will generate MIPS instructions to increment p by four, the number of
bytes in a MIPS integer. The assignment in the loop places 0 in the object pointed to by p.

The initialization of i, the first part of the for loop, is straightforward:

move $t0,%zero # 1 =0 (register $t0 = 0)

To set array[1] to 0 we must first get its address. Start by multiplying i by 4 to
get the byte address:

loopl: sl $t1,%$t0,2 # L1 =1 * 4

Since the starting address of the array is in a register, we must add it to the index
to get the address of array[1] using an add instruction:

add $t2,%a0,%tl ¥ $t2 = address of array[i]

(This example is an ideal situation for indexed addressing; see [@ In More Depth
in Section 2.20 on page 147.) Finally, we can store 0 in that address:

SW $zero, 0($t2) 4+ array[i] = 0

This instruction is the end of the body of the loop, so the next step is to increment i:

addi $t0,$t0,1 #i=19+1

132

Chapter 2 Instructions: Language of the Computer

The loop test checks if i is less than size:

s1t $1£3,%$t0, %al # $t3 = (i < size)
bne $t3,%zero,loopl 4 if (i < size) go to loopl

We have now seen all the pieces of the procedure. Here is the MIPS code for
clearing an array using indices:

move $t0,%$zero #1i=0
loopl:sl] $t1,%$t0,?2 # 5t =1 * 4
add $t2,%a0,$tl # $t2 = address of array[i]
SW bzero, 0($t2) 4 array[i]l =0
addi $t0,5%t0,1 F#Fi1i=1+1
s1t $t3,$t0,%al # $t3 = (i < size)

bne $t3,%zero,loopl # if (i < size) go to loopl

(This code works as long as size is greater than 0.)

Pointer Version of Clear

The second procedure that uses pointers allocates the two parameters array and
size to the registers $a0 and $al and allocates p to register $t0. The code for the
second procedure starts with assigning the pointer p to the address of the first ele-
ment of the array:

move §$t0,$al # p = address of array[0]

The next code is the body of the for loop, which simply stores 0 into p:

loop2: sw $zero,0($t0) # Memory[p] = 0

This instruction implements the body of the loop, so the next code is the iteration
increment, which changes p to point to the next word:

addi $t0,$t0,4 fFp=p+4

[ncrementing a pointer by 1 means moving the pointer to the next sequential
object in C. Since p is a pointer to integers, each of which use 4 bytes, the compiler
increments p by 4.

The loop test is next. The first step is calculating the address of the last element
of array. Start with multiplying size by 4 to get its byte address:

add $t1,%al,%al #F $t1 = size * 2
add $t1,%t1,9%t1 #F $t1 = size * 4

and then we add the product to the starting address of the array to get the address
of the first word after the array:

2.15 Arrays versus Pointers

133

add $t2,%a0,%tl ## $t2 = address of array[size]

The loop test is simply to see if p is less than the last element of array:

s1t $t3,5t0,$t2 # $t3 = (p<&arrayl[sizel)
bne $t3,%$zero,loop2 # if (p<&arrayl[size]) go to Toop?

With all the pieces completed, we can show a pointer version of the code to
Zero an array:

move $t0,%al if p = address of array[0]
loop2:sw$zero,0($t0) # Memory[p] =

addi $t0,$t0,4 #p=p+4

add $tl1,%al,%al ## $t1 = size * 2

add $tl,$tl1,%tl # $t1 = size * 4

add $t2,%a0,%tl # $t2 = address of array[size]

s1t $t3,%t0,$t2 # $t3 = (p<&arrayl[sizel)

bne $t3,%zero,loop2 # if (p<&arraylsize]) go to loopZ

As in the first example, this code assumes s1i ze is greater than 0.

Note that this program calculates the address of the end of the array in every
iteration of the loop, even though it does not change. A faster version of the code
moves this calculation outside the loop:

move $t0,%$al i p = address of array[0]

511 $t1,%al,’ #F $tl = size * 4

add $t2,%$a0,%tl F $t2 = address of array[size]
loop2:sw $zero,0($t0) # Memory[p] =

addi $t0,$t0,4 fp=p+4

st $t3,$t0,4$t2 # $t3 = (p<&array[size])

bne $t3,%zero,loop?2 # if (p<larray[size]) go to loop?

Comparing the Two Versions of Clear

Comparing the two code sequences side by side illustrates the difference between
array indices and pointers (the changes introduced by the pointer version are

highlighted):

move $t0,%$zero #1i=20 move $t0,%al
lToopl:sll $t1,$t0,2 # 3tl =1 % 4 s11 $tl1,%al,2
add $t2,%a0,%t1 {# $t2 = &karray[i] add $t2,%a0,$t1
SW bzero, 0(3t2) # array[i]l =0 loop?: sw $zero,0(5t0)
addi $t0,%t0,1 #1i=1+1 addi $t0,3$t0,4
st $t3,%t0,%al # $t3 = (i < size) st $t3,%t0,%t2

p =& array[0]

#f $t1 = size + 4

$t2 = Rarray[size]
Memory[p] =
fp=p+4

$t3=(p<larray[size])

bne $t3,%zero,loopls# if () go to loopl bne $t3,%zero,loop2# if () go to loop?

134

Chapter 2 Instructions: Language of the Computer

The version on the left must have the “multiply” and add inside the loop because 1
is incremented and each address must be recalculated from the new index; the
memory pointer version on the right increments the pointer p directly. The
pointer version reduces the instructions executed per iteration from 7 to 4. This
manual optimization corresponds to the compiler optimization of strength reduc-
tion (shift instead of multiply) and induction variable elimination (eliminating
array address calculations within loops).

Elaboration: The C compiler would add a test to be sure that si ze is greater than O.
One way would be to add a jump just before the first instruction of the loop to the s1t
instruction.

Understanding
Program
Performance

Beauty is altogether in the
eye of the beholder.

Margaret Wolfe Hungerford,
Molly Bawn, 1877

People used to be taught to use pointers in C to get greater efficiency than avail-
able with arrays: “Use pointers, even if you can’t understand the code.” Modern
optimizing compilers can produce just as good code for the array version. Most
programmers today prefer that the compiler do the heavy lifting.

Real Stuff: 1A-32 Instructions

Designers of instruction sets sometimes provide more powerful operations than
those found in MIPS. The goal is generally to reduce the number of instructions
executed by a program. The danger is that this reduction can occur at the cost of
simplicity, increasing the time a program takes to execute because the instructions
are slower. This slowness may be the result of a slower clock cycle time or of
requiring more clock cycles than a simpler sequence (see Section 4.8).

The path toward operation complexity is thus fraught with peril. To avoid these
problems, designers have moved toward simpler instructions. Section 2.17 dem-
onstrates the pitfalls of complexity.

The Intel 1A-32

MIPS was the vision of a single small group in 1985; the pieces of this architecture
fit nicely together, and the whole architecture can be described succinctly. Such is
not the case for the IA-32; it is the product of several independent groups who
evolved the architecture over almost 20 years, adding new features to the original

2.16

Real Stuff: 1A-32 Instructions

135

instruction set as someone might add clothing to a packed bag. Here are impor-
tant [A-32 milestones:

1978: The Intel 8086 architecture was announced as an assembly-language-
compatible extension of the then-successful Intel 8080, an 8-bit microproces-
sor. The 8086 is a 16-bit architecture, with all internal registers 16 bits wide.
Unlike MIPS, the registers have dedicated uses, and hence the 8086 is not con-
sidered a general-purpose register architecture.

1980: The Intel 8087 tloating-point coprocessor is announced. This archi-
tecture extends the 8086 with about 60 floating-point instructions. Instead
of using registers, it relies on a stack (see Section 2.19 and Section 3.9).

1982: The 80286 extended the 8086 architecture by increasing the address
space to 24 bits, by creating an elaborate memory-mapping and protection
model (see Chapter 7), and by adding a few instructions to round out the
instruction set and to manipulate the protection model.

1985: The 80386 extended the 80286 architecture to 32 bits. In addition to a
32-bit architecture with 32-bit registers and a 32-bit address space, the
80386 added new addressing modes and additional operations. The added
instructions make the 80386 nearly a general-purpose register machine. The
80386 also added paging support in addition to segmented addressing (see
Chapter 7). Like the 80286, the 80386 has a mode to execute 8086 programs
without change.

1989-95: The subsequent 80486 in 1989, Pentium in 1992, and Pentium Pro
in 1995 were aimed at higher performance, with only four instructions
added to the user-visible instruction set: three to help with multiprocessing
(Chapter 9) and a conditional move instruction.

1997: After the Pentium and Pentium Pro were shipping, Intel announced
that it would expand the Pentium and the Pentium Pro architectures with
MMX (Multi Media Extensions). This new set of 57 instructions uses the
floating-point stack to accelerate multimedia and communication applica-
tions. MMX instructions typically operate on multiple short data elements
at a time, in the tradition of single instruction, multiple data (SIMD) archi-
tectures (see Chapter 9). Pentium II did not introduce any new instructions.

1999: Intel added another 70 instructions, labeled SSE (Streaming SIMD
Extensions) as part of Pentium III. The primary changes were to add eight
separate registers, double their width to 128 bits, and add a single-precision
floating-point data type. Hence four 32-bit floating-point operations can be
performed in parallel. To improve memory performance, SSE included
cache prefetch instructions plus streaming store instructions that bypass the
caches and write directly to memory.

general-purpose register

(GPR) A register that can be
used for addresses or for data
with virtually any instruction.

136

Chapter 2 Instructions: Language of the Computer

B 2001: Intel added yet another 144 instructions, this time labeled SSE2. The
new data type is double-precision arithmetic, which allows pairs of 64-bit
floating-point operations in parallel. Almost all of these 144 instructions are
versions of existing MMX and SSE instructions that operate on 64 bits of
data in parallel. Not only does this change enable more multimedia opera-
tions, it gives the compiler a ditferent target for tloating-point operations
than the unique stack architecture. Compilers can choose to use the eight
SSE registers as tloating-point registers like those found in other computers.
This change has boosted floating-point performance on the Pentium 4, the
first microprocessor to include SSE2 instructions.

B 2003: A company other than Intel enhanced the [A-32 architecture this time.
AMD announced a set of architectural extensions to increase the address space
from 32 to 64 bits. Similar to the transition from a 16- to 32-bit address space
in 1985 with the 80386, AMD64 widens all registers to 64 bits. It also increases
the number of registers to 16 and increases the number of 128-bit SSE regis-
ters to 16. The primary [SA change comes from adding a new mode called
long mode that redefines the execution of all IA-32 instructions with 64-bit
addresses and data. To address the larger number of registers, it adds a new
prefix to instructions. Depending how you count, long mode also adds 4 to 10
new instructions and drops 27 old ones. PC-relative data addressing is another
extension. AM D64 still has a mode that is identical to TA-32 (legacy mode) plus
a mode that restricts user programs to [A-32 but allows operating systems to
use AMD64 (compatability mode). These modes allow a more gracetul transi-
tion to 64-bit addressing than the HP/Intel IA-64 architecture.

B 2004: Intel capitulates and embraces AMD®64, relabeling it Extended Memory
64 Technology (EM64T). The major difference is that Intel added a 128-bit
atomic compare and swap instruction, which probably should have been
included in AMD64. At the same time, Intel announced another generation of
media extensions. SSE3 adds 13 instructions to support complex arithmetic,
graphics operations on arrays of structures, video encoding, floating point
conversion, and thread synchronization (see Chapter 9). AMD will offer SSE3
in subsequent chips and it will almost certainly add the missing atomic swap
instruction to AMD®64 to maintain binary compatibility with Intel.

This history illustrates the impact of the “golden handcufts” of compatibility on
the TA-32, as the existing software base at each step was too important to jeopar-
dize with significant architectural changes.

Whatever the artistic failures of the [A-32, keep in mind that there are more
instances of this architectural family on desktops than of any other architecture,
increasing by 100 million per year. Nevertheless, this checkered ancestry has led to
an architecture that is difficult to explain and impossible to love.

Brace yourselt for what you are about to see! Do nof try to read this section
with the care you would need to write [A-32 programs; the goal instead is to give

2.16 Real Stuff: I1A-32 Instructions

137

you familiarity with the strengths and weaknesses of the world’s most popular
desktop architecture.

Rather than show the entire 16-bit and 32-bit instruction set, in this section we
concentrate on the 32-bit subset that originated with the 80386, as this portion of
the architecture is what is used. We start our explanation with the registers and
addressing modes, move on to the integer operations, and conclude with an
examination of instruction encoding.

IA-32 Registers and Data Addressing Modes

The registers of the 80386 shows the evolution of the instruction set (Figure 2.40).
The 80386 extended all 16-bit registers (except the segment registers) to 32 bits,

Name Use
31 0
EAX GPRO
ECX GPR 1
EDX GPR 2
EBX GPR 3
ESP GPR 4
EBP GPR 5
ESI GPR 6
EDI GPR 7
CS Code segment pointer
SS Stack segment pointer (top of stack)
DS Data segment pointer 0
ES Data segment pointer 1
FS Data segment pointer 2
GS Data segment pointer 3
EIP Instruction pointer (PC)
EFLAGS Condition codes

FIGURE 2.40 The 80386 register set. Starting with the 80386, the top eight registers were extended
to 32 bits and could also be used as general-purpose registers.

138

Chapter 2 Instructions: Language of the Computer

Source/destination operand type Second source operand

Register Register
Register Immediate
Register Memory
Memory Register
Memory Immediate

FIGURE 2.41 Instruction types for the arithmetic, logical, and data transfer instructions.
The 1A-32 allows the combinations shown. The only restriction is the absence of a memory-memory mode.

Immediates may be 8, 16, or 32 bits in length; a register is any one of the 14 major registers in Figure 2.40
(not EIP or EFLAGS).

prefixing an E to their name to indicate the 32-bit version. We'll refer to them
generically as GPRs (general-purpose registers). The 80386 contains only eight
GPRs. This means MIPS programs can use four times as many.

The arithmetic, logical, and data transfer instructions are two-operand instruc-
tions that allow the combinations shown in Figure 2.41. There are two important
differences here. The 1A-32 arithmetic and logical instructions must have one
operand act as both a source and a destination; MIPS allows separate registers for
source and destination. This restriction puts more pressure on the limited regis-
ters, since one source register must be modified. The second important difference
is that one of the operands can be in memory. Thus virtually any instruction may
have one operand in memory, unlike MIPS and PowerPC.

The seven data memory-addressing modes, described in detail below, offer two
sizes of addresses within the instruction. These so-called displacements can be 8
bits or 32 bits.

Although a memory operand can use any addressing mode, there are restric-
tions on which registers can be used in a mode. Figure 2.42 shows the [A-32
addressing modes and which GPRs cannot be used with that mode, plus how you
would get the same effect using MIPS instructions.

IA-32 Integer Operations

The 8086 provides support for both 8-bit (byte) and 16-bit (word) data types. The
80386 adds 32-bit addresses and data (double words) in the IA-32. The data type
distinctions apply to register operations as well as memory accesses. Almost every
operation works on both 8-bit data and on one longer data size. That size is deter-
mined by the mode and is either 16 bits or 32 bits.

Clearly some programs want to operate on data of all three sizes, so the 80386
architects provide a convenient way to specify each version without expanding
code size significantly. They decided that either 16-bit or 32-bit data dominates

2.16 Real Stuff: 1A-32 Instructions 139

Register
Description restrictions MIPS equivalent

Register indirect Address is in a register. not ESP or EBP Tw $50,0(%s1)
Based mode with & or 32-bit Address is contents of base register plus not ESP or EBP Tw $s0,100($s1)#<16-bit
displacement displacement. jfdisplacement
Base plus scaled index The address is Base: any GPR mul $t0,%$s2,4
Base + (259 x Index) Index: not ESP add $t0,$t0, $s1
where Scale has the value 0, 1, 2, or 3. Tw $50,00%5tD)
Base plus scaled index with The address is Base: any GPR mul $t0,%s2,4
8- or 32-bit displacement Base + (2°°®* x Index) + displacement Index: not ESP add $t0,%t0, $s1
where Scale has the value 0, 1, 2, or 3. Tw $£s0,100(%t ff<16-bit
displacement

FIGURE 2.42 1A-32 32-bit addressing modes with register restrictions and the equivalent MIPS code. The Base plus Scaled Index
addressing mode, not found in MIPS or the PowerPC, is included to avoid the multiplies by four (scale factor of 2) to turn an index in a register into a
byte address (see Figures 2.34 and 2.36). A scale factor of 1 i1s used for 16-bit data, and a scale factor of 3 for 64-bit data. Scale factor of 0 means the
address is not scaled. If the displacement is longer than 16 bits in the second or fourth modes, then the MIPS equivalent mode would need two more
instructions: a 1U7 to load the upper 16 bits of the displacement and an add to sum the upper address with the base register $51. (Intel gives two dif-
ferent names to what is called Based addressing mode—Based and Indexed—but they are essentially identical and we combine them here.)

most programs, and so it made sense to be able to set a default large size. This
default data size is set by a bit in the code segment register. To override the default
data size, an 8-bit prefix is attached to the instruction to tell the machine to use the
other large size for this instruction.

The prefix solution was borrowed from the 8086, which allows multiple prefixes
to modify instruction behavior. The three original prefixes override the default seg-
ment register, lock the bus to support a semaphore (see Chapter 9), or repeat the
following instruction until the register ECX counts down to 0. This last prefix was
intended to be paired with a byte move instruction to move a variable number of
bytes. The 80386 also added a prefix to override the default address size.

The TA-32 integer operations can be divided into four major classes:

1. Data movement instructions, including move, push, and pop

2. Arithmetic and logic instructions, including test, integer, and decimal
arithmetic operations

3. Control flow, including conditional branches, unconditional jumps, calls,
and returns

4. String instructions, including string move and string compare

The first two categories are unremarkable, except that the arithmetic and
logic instruction operations allow the destination to be either a register or a
memory location. Figure 2.43 shows some typical IA-32 instructions and their
functions.

140

Chapter 2 Instructions: Language of the Computer

JE name if equal(condition code) {EIP=name};
EIP-128 < name < EIP+128
JMP name EIP=name
CALL name SP=5P-4; M[5P]=EIP+b; EIP=name;
MOVW EBEX,[EDI+45] EBX=M[EDI+45]
PUSH ESI SP=5P-4; M[SP]=E5I
POP EDI EDI=M[SP]; SP=5P+4
ADD EAX,#6765 EAX= EAX+6765
TEST EDX , {42 Set condition code (flags) with EDX and 42
MOVSL MCEDI]=M[ESI]:
EDI=EDI+4; ESI=E5I+4

FIGURE 2.43 Some typical I1A-32 instructions and their functions. A list of frequent operations
appears in Figure 2.44. The CALL saves the EIP of the next instruction on the stack. (EIP is the Intel PC.)

Conditional branches on the [A-32 are based on condition codes or flags.
Condition codes are set as a side effect of an operation; most are used to com-
pare the value of a result to 0. Branches then test the condition codes. The
argument for condition codes is that they occur as part of normal operations
and are faster to test than it is to compare registers, as MIPS does for beq and
bne. The argument against condition codes is that the compare to 0 extends
the time of the operation, since it uses extra hardware after the operation, and
that often the programmer must use compare instructions to test a value that is
not the result of an operation. Moreover, PC-relative branch addresses must be
specified in the number of bytes, since unlike MIPS, 80386 instructions are not
all 4 bytes in length.

String instructions are part of the 8080 ancestry of the IA-32 and are not com-
monly executed in most programs. They are often slower than equivalent software
routines (see the fallacy on page 143).

Figure 2.44 lists some of the integer IA-32 instructions. Many of the instruc-
tions are available in both byte and word formats.

IA-32 Instruction Encoding

Saving the worst for last, the encoding of instructions in the 80836 is complex,
with many different instruction formats. Instructions for the 80386 may vary
from 1 byte, when there are no operands, up to 17 bytes.

Figure 2.45 shows the instruction format for several of the example instructions
in Figure 2.43. The opcode byte usually contains a bit saying whether the operand is

2.16 Real Stuff: I1A-32 Instructions

141

Control Conditional and unconditional branches

JNZ, JZ Jump if condition to EIP + 8-bit offset; JNE (for JNZ), JE (for JZ) are alternative
names

JMP Unconditional jump—=8-bit or 16-bit offset

CALL Subroutine call—16-bit offset; return address pushed onto stack

RET Pops return address from stack and jumps to it

LOOP Loop branch—decrement ECX; jump to EIP + 8-bit displacement if ECX 20

Data transfer Move data between registers or between register and memory

MOV Move between two registers or between register and memory

PUSH, POP Push source operand on stack; pop operand from stack top to a register

LES Load ES and one of the GPRs from memory

Arithmetic, logical | Arithmetic and logical operations using the data registers and memory

ADD, SUB Add source to destination; subtract source from destination; register-memory
format

CMP Compare source and destination; registermemory format

SHL, SHR, RCR Shift left; shift logical right; rotate right with carry condition code as fill

CEW Convert byte in 8 rightmost bits of EAX to 16-bit word in right of EAX

TEST Logical AND of source and destination sets condition codes

INC, DEC Increment destination, decrement destination

OR, XOR Logical OR; exclusive OR; register-memory format

String Move between string operands; length given by a repeat prefix

MOVS Copies from string source to destination by incrementing ESI and EDI; may be
repeated

LODS Loads a byte, word, or double word of a string into the EAX register

FIGURE 2.44 Some typical operations on the 1A-32. Many operations use register-memory for-
mat, where either the source or the destination may be memory and the other may be a register or immedi-
ate operand.

8 bits or 32 bits. For some instructions, the opcode may include the addressing
mode and the register; this is true in many instructions that have the form “register
= register op immediate.” Other instructions use a “postbyte” or extra opcode byte,
labeled “mod, reg, r/m,” which contains the addressing mode information. This
postbyte is used for many of the instructions that address memory. The base plus
scaled index mode uses a second postbyte, labeled “sc, index, base.”

Figure 2.46 shows the encoding of the two postbyte address specifiers for both
16-bit and 32-bit mode. Unfortunately, to fully understand which registers and
which addressing modes are available, you need to see the encoding of all address-
ing modes and sometimes even the encoding of the instructions.

142 Chapter 2 Instructions: Language of the Computer

a. JE EIP + displacement

4 4 8
JE G':.’"d - Displacement
tion
b. CALL
8 a2
CALL Offset

c.MOV EBX, [EDI + 45]

6 11 8 8
r/m :
MOV |d|w Postbyte Displacement
d. PUSH ESI
B 3
PUSH |Reg

e. ADD EAX, #6765
4 3 1 32

ADD |Reg|w Immediate

f. TEST EDX, #42
7 1 8 32

TEST w| Postbyte Immediate

FIGURE 2.45 Typical I1A-32 instruction formats. Figure 2.46 shows the encoding of the postbyte.
Many instructions contain the 1-bit field w, which says whether the operation is a byte or double word. The d
field in MOV is used in instructions that may move to or from memory and shows the direction of the move.
The ADD instruction requires 32 bits for the immediate field because in 32-bit mode the immediates are either
8 bits or 32 bits. The immediate field in the TEST is 32 bits long because there is no 8-bit immediate for test in
32-bit mode. Overall, instructions may vary from 1 to 17 bytes in length. The long length comes from extra 1-
byte prefixes, having both a 4-byte immediate and a 4-byte displacement address, using an opcode of 2 bytes,
and using the scaled index mode specifier, which adds another byte.

IA-32 Conclusion

Intel had a 16-bit microprocessor two years before its competitors’ more elegant
architectures, such as the Motorola 68000, and this headstart led to the selection
of the 8086 as the CPU for the IBM PC. Intel engineers generally acknowledge
that the TA-32 is more difficult to build than machines like MIPS, but the much

2.17 Fallacies and Pitfalls 143

i |w=0] wet [vm| wode0 || wodet | mod=2 [mod=s
16b | 32b 16b 32b 16b 32b 16b 32b

0 AL AX EAX 0 addr=BX+5I =EAX same same same same same
1 CL CX ECX 1 addr=BX+DlI =ECX addr as addr as addr as addr as as
2 DL DX EDX 2 addr=BP+35I =EDX mod=0 maod=0 mod=0 mod=0 reg
3 EL BX EBX 3 addr=BP+35I =EBX + disp8 + disp8 + disp16 + disp32 field
4 AH SP ESP 4 addr=5I =(sib) Sl+disp8 (sibHdisp8 Sl+disp8 (sib}+disp32 “

5 CH BP EBP 5 addr=DI =disp32 Di+disp& EBP+disp8 Di+displ6 EBP+disp32 “

6 DH Sl ESI 6 addr=displ6 =ESI BP+disp8 ESl+disp8 BP+displ6 ESl+disp32 “

7 EBH DI EDI 7 addr=BX =EDI BX+disp8 EDl+disp& BX+displ6 EDI+disp32 “

FIGURE 2.46 The encoding of the first address specifier of the 1A-32, “mod, reg, r/m."” The first four columns show the encoding of
the 3-bit reg field, which depends on the w bit from the opcode and whether the machine is in 16-bit mode (8086) or 32-bit mode (80386). The
remaining columns explain the mod and r/m fields. The meaning of the 3-bit r/m field depends on the value in the 2-bit mod field and the address
size. Basically, the registers used in the address calculation are listed in the sixth and seventh columns, under mod = 0, with mod = 1 adding an 8-bit
displacement and mod = 2 adding a 16-bit or 32-bit displacement, depending on the address mode. The exceptions are r/m = 6 when mod = 1 or
mod = 2 in 16-bit mode selects BP plus the displacement; r/m = 5 when mod = 1 or mod = 2 in 32-bit mode selects EBP plus displacement; and r/m =
4 in 32-bit mode when mod = 3, where (sib) means use the scaled index mode shown in Figure 2.42. When mod = 3, the r/m field indicates a register,
using the same encoding as the reg field combined with the w bit.

larger market means Intel can atford more resources to help overcome the added
complexity. What the IA-32 lacks in style is made up in quantity, making it beauti-
ful from the right perspective.

The saving grace is that the most frequently used IA-32 architectural components
are not too difficult to implement, as Intel has demonstrated by rapidly improving
performance of integer programs since 1978. To get that performance, compilers
must avoid the portions of the architecture that are hard to implement fast.

Fallacies and Pitfalls

Fallacy: More powerful instructions mean higher performance.

Part of the power of the Intel IA-32 is the prefixes that can modify the execu-
tion of the following instruction. One prefix can repeat the following instruc-
tion until a counter counts down to 0. Thus, to move data in memory, it

would seem that the natural instruction sequence is to use move with the
repeat prefix to perform 32-bit memory-to-memory moves.

An alternative method, which uses the standard instructions found in all com-
puters, is to load the data into the registers and then store the registers back to

144

Chapter 2 Instructions: Language of the Computer

memory. This second version of this program, with the code replicated to reduce
loop overhead, copies at about 1.5 times faster. A third version, which used the
larger floating-point registers instead of the integer registers of the IA-32, copies at
about 2.0 times faster than the complex instruction.

Fallacy: Write in assembly language to obtain the highest performance.

At one time compilers for programming languages produced naive instruction
sequences; the increasing sophistication of compilers means the gap between
compiled code and code produced by hand is closing fast. In fact, to compete
with current compilers, the assembly language programmer needs to thor-
oughly understand the concepts in Chapters 6 and 7 (processor pipelining and
memory hierarchy).

This battle between compilers and assembly language coders is one situation
in which humans are losing ground. For example, C offers the programmer a
chance to give a hint to the compiler about which variables to keep in registers
versus spilled to memory. When compilers were poor at register allocation, such
hints were vital to performance. In fact, some C textbooks spent a fair amount
of time giving examples that effectively use register hints. Today’s C compilers
generally ignore such hints because the compiler does a better job at allocation
than the programmer.

Even if writing by hand resulted in faster code, the dangers of writing in assem-
bly language are longer time spent coding and debugging, the loss in portability,
and the difficulty of maintaining such code. One of the few widely accepted axi-
oms of software engineering is that coding takes longer it you write more lines,
and it clearly takes many more lines to write a program in assembly language than
in C. Moreover, once it is coded, the next danger is that it will become a popular
program. Such programs always live longer than expected, meaning that someone
will have to update the code over several years and make it work with new releases
of operating systems and new models of machines. Writing in higher-level lan-
guage instead of assembly language not only allows future compilers to tailor the
code to future machines, it also makes the software easier to maintain and allows
the program to run on more brands of computers.

Pitfall: Forgetting that sequential word addresses in machines with byte address-
ing do not differ by one.

Many an assembly language programmer has toiled over errors made by assuming
that the address of the next word can be found by incrementing the address in a
register by one instead of by the word size in bytes. Forewarned is forearmed!

Pitfall: Using a pointer to an automatic variable outside its defining procedure.

A common mistake in dealing with pointers is to pass a result from a procedure that
includes a pointer to an array that is local to that procedure. Following the stack dis-
cipline in Figure 2.16, the memory that contains the local array will be reused as
soon as the procedure returns. Pointers to automatic variables can lead to chaos.

2.18 Concluding Remarks

145

Concluding Remarks

The two principles of the stored-program computer are the use of instructions that
are indistinguishable from numbers and the use of alterable memory for pro-
grams. These principles allow a single machine to aid environmental scientists,
financial advisers, and novelists in their specialties. The selection of a set of
instructions that the machine can understand demands a delicate balance among
the number of instructions needed to execute a program, the number of clock
cycles needed by an instruction, and the speed of the clock. Four design principles
guide the authors of instruction sets in making that delicate balance:

1. Simplicity favors regularity. Regularity motivates many features of the MIPS
instruction set: keeping all instructions a single size, always requiring three
register operands in arithmetic instructions, and keeping the register fields
in the same place in each instruction format.

2. Smaller is faster. The desire for speed is the reason that MIPS has 32 regis-
ters rather than many more.

3. Make the common case fast. Examples of making the common MIPS case
fast include PC-relative addressing for conditional branches and immediate
addressing for constant operands.

4. Good design demands good compromises. One MIPS example was the com-
promise between providing for larger addresses and constants in instruc-
tions and keeping all instructions the same length.

Above this machine level is assembly language, a language that humans can
read. The assembler translates it into the binary numbers that machines can
understand, and it even “extends” the instruction set by creating symbolic instruc-
tions that aren’t in the hardware. For instance, constants or addresses that are too
big are broken into properly sized pieces, common variations of instructions are
given their own name, and so on. Figure 2.47 lists the MIPS instructions we have
covered so far, both real and pseudoinstructions.

These instructions are not born equal; the popularity of the few dominates the
many. For example, Figure 2.48 shows the popularity of each class of instructions
for SPEC2000. The varying popularity of instructions plays an important role in
the chapters on performance, datapath, control, and pipelining.

Each category of MIPS instructions is associated with constructs that appear in
programming languages:

Less 1s more.

Robert Browning, Andrea del
Sarto, 1855

146

Chapter 2 Instructions: Language of the Computer

MIPS instructions m Pseudo MIPS
add add move

R move R
subtract sub R multiply mult R
add immediate addi I multiply immediate multi I
load word Tw | load immediate 11 I
store word SW | branch less than b1t I
load half 1h | branch less than or equal ble I
store half sh | branch greater than bgt I
load byte 1b | branch greater than or equal bge I
store byte sb |
load upper immediate Tui I
and and R
or or R
nor nor R
and immediate andi |
or immediate ori |
shift left logical sll R
shift right logical srl R
branch on equal beq |
branch on not equal bne |
set less than slt R
set less than STt |
immediate
jump J J
jump register Jjr R
jump and link jal J

FIGURE 2.47 The MIPS instruction set covered so far, with the real MIPS instructions on
the left and the pseudoinstructions on the right. @ Appendix A (Section A.10, on page A-45)
describes the full MIPS architecture. Figure 2.27 shows more details of the MIPS architecture revealed in
this chapter.

Instruction class

HLL correspondence

MIPS examples

Croger [et

Arithmetic add, sub, addi operations in assignment statements 24% 48%
Data transfer Tw, sw, 1b, sb, Tui references to data structures, such as arrays 36% 39%
Logical and, or, nor, andi, ori, operations in assignment statements 18% 4%

s11, sr]
Conditional branch beq, bne, s1t, s1ti if statements and loops 18% 6%
Jump 3. Jr, Jjal procedure calls, returns, and case/switch statements 3% 0%

FIGURE 2.48 MIPS instruction classes, examples, correspondence to high-level program language constructs, and percent-
age of MIPS instructions executed by category for average of five SPEC2000 integer programs and five SPEC2000 floating
point programs. Figure 3.26 shows the percentage of the individual MIPS instructions executed.

2.20 Exercises

147

B The arithmetic instructions correspond to the operations found in assign-
ment statements.

B Data transfer instructions are most likely to occur when dealing with data
structures like arrays or structures.

B The conditional branches are used in if statements and in loops.

B The unconditional jumps are used in procedure calls and returns and for
case/switch statements.

After we explain computer arithmetic in Chapter 3, we reveal more of the MIPS
instruction set architecture.

21 Historical Perspective and
: Further Reading

This section surveys the history of instruction set architraves over time, and we
give a short history of programming languages and compilers. ISAs include accu-
mulator architectures, general-purpose register architectures, stack architectures,
and a brief history of the [A-32. We also review the controversial subjects of high-
level-language computer architectures and reduced instruction set computer
architectures. The history of programming languages includes Fortran, Lisp,
Algol, C, Cobol, Pascal, Simula, Smalltalk, C++, and Java, and the history of com-
pilers includes the key milestones and the pioneers who achieved them. The rest
of this section is on the CD.

Exercises

©®] Appendix A describes the MIPS simulator, which is helpful for these exercises.
Although the simulator accepts pseudoinstructions, try not to use pseudoinstruc-
tions for any exercises that ask you to produce MIPS code. Your goal should be to
learn the real MIPS instruction set, and if you are asked to count instructions,
your count should reflect the actual instructions that will be executed and not the
pseudoinstructions.

148

Chapter 2 Instructions: Language of the Computer

There are some cases where pseudoinstructions must be used (for example, the
la instruction when an actual value is not known at assembly time). In many
cases, they are quite convenient and result in more readable code (for example, the
17 and move instructions). If you choose to use pseudoinstructions for these rea-
sons, please add a sentence or two to your solution stating which pseudoinstruc-
tions you have used and why.

2.1 [15] <§2.4> @ For More Practice: Instruction Formats

2.2 (5] <§2.4> What binary number does this hexadecimal number represent:
7ttt fttay, . ¢ What decimal number does it represent?

2.3 [5] <§2.4> What hexadecimal number does this binary number represent:
110010101111111011111010110011104,,4¢

2.4 (5] <§2.4> Why doesn’t MIPS have a subtract immediate instruction?
2.5 [15] <§2.5> [@, For More Practice: MIPS Code and Logical Operations

2.6 [15] <§2.5> Some computers have explicit instructions to extract an arbitrary
field from a 32-bit register and to place it in the least significant bits of a register.
The figure below shows the desired operation:

31 j ; 0
field
31 - j bits j—ibits™—__ i + 1 bits
31 ! 2
0. 0000 field
32 - (j - i) bits j— i bits

Find the shortest sequence of MIPS instructions that extracts a field for the con-
stant values 7 = 5 and j = 22 from register $t3 and places it in register $t 0. (Hint:
[t can be done in two instructions.)

2.7 [10] <§2.5> [@ For More Practice: Logical Operations in MIPS
2.8 [20] <§2.5> @ In More Depth: Bit Fields in C
2.9 [20] <§2.5> @, In More Depth: Bit Fields in C
2.10 [20] <§2.5> @] In More Depth: Jump Tables
2.11 [20] <§2.5> @] In More Depth: Jump Tables
2.12 [20] <§2.5> @] In More Depth: Jump Tables

2.20 Exercises

149

2.13 [10] <§2.6> Construct a control flow graph (like the one shown in Fig. 2.11)
for the following section of C or Java code:

for (1=0; 1<x; i=1+1)

y =y +

2.14 [10] <§2.6> [@ For More Practice: Writing Assembly Code

2.15 [25] <§2.7> Implement the following C code in MIPS, assuming that
set_array is the first function called:

int 1;
void set_array(int num) {
int array[10];
for (i=0; i1<10; i++) |
array[i]l = compare(num, 1i);

J
int compare(int a, int b) {
it (sub(a, b) >= 0)
return 1;
else
return 0;

i
int sub (int a, int b) {
return a-b;

}

Be sure to handle the stack and frame pointers appropriately. The variable code
font is allocated on the stack, and i corresponds to $s0. Draw the status of the
stack before calling set_array and during each function call. Indicate the names
of registers and variables stored on the stack and mark the location of $sp and

$Tp.
2.16
2.17
2.18
2.19

30
30
20
5]

<§2.7> @) In More Depth: Tail Recursion
<§2.7> @) In More Depth: Tail Recursion
<§2.7> @ In More Depth: Tail Recursion

<§2.8> Iris and Julie are students in computer engineering who are

learning about ASCII and Unicode character sets. Help them by spelling their
names and your first name in both ASCII (using decimal notation) and Unicode
(using hex notation and the Basic Latin character set).

150

Chapter 2 Instructions: Language of the Computer

2.20 [10] <§2.8> Compute the decimal byte values that form the null-terminated
ASCII representation of the following string:

A byte 1s 8 bits
2.21 [30] <§§2.7, 2.8> @ For More Practice: MIPS Coding and ASCII Strings
2.22 [20] <§§2.7, 2.8> [@ For More Practice: MIPS Coding and ASCII Strings

2.23 [20] <§§2.7,2.8> {Ex. 2.22} @, For More Practice: MIPS Coding and ASCII
Strings

2.24 [30] <§§2.7, 2.8> [@ For More Practice: MIPS Coding and ASCII Strings
2.25 <§2.8> [@ For More Practice: Comparing C/Java to MIPS

2.26 <§2.8> [@ For More Practice: Translating MIPS to C

2.27 <§2.8> [@ For More Practice: Understanding MIPS Code

2.28 <§2.8> [@ For More Practice: Understanding MIPS Code

2.29 [5] <§§2.3, 2.6, 2.9> Add comments to the following MIPS code and de-
scribe in one sentence what it computes. Assume that $a0 and $al are used for
the input and both initially contain the integers a and b, respectively. Assume that
$v0 is used for the output.

add $t0, $zero, $zero
loop: beq $al, $zero, finish
add $t0, $t0, $al
sub $al, %al, 1
J loop
finish: addi $t0, $t0, 100
add $vO0, $t0, $zero

2.30 [12] <§§2.3, 2.6, 2.9> The following code fragment processes two arrays and
produces an important value in register $v0. Assume that each array consists of
2500 words indexed 0 through 2499, that the base addresses of the arrays are stored
in $a0 and $al respectively, and their sizes (2500) are stored in $aZ and $a3, re-
spectively. Add comments to the code and describe in one sentence what this code
does. Specifically, what will be returned in $v0¢?

s $a2, %$a’l, 2
s11 $a3, %a3, 2
add $v0, $zero, $zero
add $t0, %$zero, $zero

outer: add $t4, $a0, $t0O

2.20 Exercises

151

Tw $td, 0($t4d)

add $tl1, $zero, $zero
inner: add $t3, $al, §tl

Tw $t3, 0($t3)

bne $t3, $t4, skip

addi $vO, $vO, 1
skip: addi$ tl, $t1, 4

bne $t1, %$a3, inner
addi $t0, $t0, 4
bne $t0, %$aZ, outer

2.31 [10] <§§2.3, 2.6, 2.9> Assume that the code from Exercise 2.30 is run on a ma-
chine with a 2 GHz clock that requires the following number of cycles for each instruc-

tion:

insirction | —cyeles

add,addi.sl] 1
Tw, bne 2

In the worst case, how many seconds will it take to execute this code?

2.32 [5] <§2.9> Show the single MIPS instruction or minimal sequence of in-
structions for this C statement:

b =25 a;
Assume that a corresponds to register $t0 and b corresponds to register $t 1.
2.33 [10] <§2.9> @ For More Practice: Translating from C to MIPS

2.34 [10] <§§ 2.3, 2.6, 2.9> The following program tries to copy words from the
address in register $a0 to the address in register $al, counting the number of
words copied in register $v0. The program stops copying when it finds a word
equal to 0. You do not have to preserve the contents of registers $v1, $a0,and $al.
This terminating word should be copied but not counted.

addi $v0, $zero, 0 3 Initialize count
loop: 1w $vl, 0($a0) 4 Read next word from source
sw $vl, 0(%$al) 3 Write to destination
addi $a0, %a0, 4 # Advance pointer to next source
addi $al, %$al, 4 3 Advance pointer to next destination

152

Chapter 2 Instructions: Language of the Computer

beq $vl1, $zero, loop # Loop if word copied != zero

There are multiple bugs in this MIPS program; fix them and turn in a bug-free ver-
sion. Like many of the exercises in this chapter, the easiest way to write MIPS programs
is to use the simulator described in @] Appendix A.

2.35 [10] <§§2.2, 2.3, 2.6, 2.9> [@ For More Practice: Reverse Translation from
MIPS to C

2.36 <§2.9> @ For More Practice: Translating from C to MIPS

2.37 [25] <§2.10> As discussed on page 107 (Section 2.10, “Assembler”),
pseudoinstructions are not part of the MIPS instruction set but often appear in
MIPS programs. For each pseudoinstruction in the following table, produce a
minimal sequence of actual MIPS instructions to accomplish the same thing.
You may need to use $at for some of the sequences. In the following table, big
refers to a specific number that requires 32 bits to represent and small to a
number that can fit in 16 bits.

Pseudoinstruction What it accomplishes

move $tl1, $t2 $L1 =412

clear $t50 $t0 =0

beq $t1, small, L if ($tl1=small)gotolL
beq $t2, big, L if ($t2=>big)gotolL
11 $t1, small $t1 =small

11 $t2, big $t2 =big

ble $t3, $t6, L if ($t3 <=%th)gotol
bgt $t4, $t5, L if ($td > $th) gotol
bge $t5, $t3, L if ($th >=%t3) goto L
addi $t0, $t2, big $t0=%t2+ big

Tw $t5, big($t2) $tH =Memory[$tZ2 + big]

2.38 [5] <§§2.9, 2.10> Given your understanding of PC-relative addressing, ex-
plain why an assembler might have problems directly implementing the branch in-
struction in the following code sequence:

here: beq §s0, $s2, there

there add $s0, $s0, $s0O
Show how the assembler might rewrite this code sequence to solve these problems.
2.39 <§2.10> @ For More Practice: MIPS Pseudoinstructions
2.40 <§2.10> @ For More Practice: Linking MIPS Code

2.20 Exercises

153

2.41 <§2.10> [@ For More Practice: Linking MIPS Code

2.42 [20] <§2.11>Find a large program written in C (for example, gcc, which can
be obtained from http://gcc.gnu.org) and compile the program twice, once with op-
timizations (use -03) and once without. Compare the compilation time and run
time of the program. Are the results what you expect?

2.43 [20] <§2.12> [@ For More Practice: Enhancing MIPS Addressing Modes
2.44 [10] <§2.12> [@ For More Practice: Enhancing MIPS Addressing Modes
2.45 [10] <§2.12> [@ In More Depth: The IBM/Motorola versus MIPS in C
2.46 [15] <§§2.6, 2.13> The MIPS translation of the C (or Java) segment

while (savel[i] == k)
1 +=1;

on page 129 (Section 2.6, “Compiling a While Loop in C”) uses both a conditional
branch and an unconditional jump each time through the loop. Only poor com-
pilers would produce code with this loop overhead. Assuming that this code is in
Java (not C), rewrite the assembly code so that it uses at most one branch or jump
each time through the loop. Additionally, add code to perform the Java checking
for index out of bounds and ensure that this code uses at most one branch or
jump each time through the loop. How many instructions are executed before and
after the optimization if the number of iterations of the loop is 10 and the value of
i is never out of bounds?

2.47 [30] <§52.6, 2.13> Consider the following fragment of Java code:

for (1=0; 1<{=100; 1=i+1)
al1] = b[1] + c;

Assume that a and b are arrays of words and the base address of a is in $a0 and
the base address of b is in $al. Register $t0 is associated with variable i and reg-
ister $50 with the value of c. You may also assume that any address constants you
need are available to be loaded from memory. Write the code for MIPS. How
many instructions are executed during the running of this code if there are no
array out-of-bounds exceptions thrown? How many memory data references will
be made during execution?

2.48 [5] <§2.13> Write the MIPS code for the Java method compareTo (found
in Figure 2.35 on page 124).

2.49 [15] <§2.17> When designing memory systems, it becomes useful to know
the frequency of memory reads versus writes as well as the frequency of accesses for
instructions versus data. Using the average instruction mix information for MIPS
for the program SPEC2000int in Figure 2.48 (on page 141), find the following:

154

Chapter 2 Instructions: Language of the Computer

a. The percentage of all memory accesses (both data and instruction) that are

for data.

b. The percentage of all memory accesses (both data and instruction) that are

for reads. Assume that two-thirds of data transfers are loads.

[10] <§2.17> Perform the same calculations as for Exercise 2.49, but replace

the program SPEC2000int with SPEC2000fp.

2.51

[15] <§2.17> Suppose we have made the following measurements of average

CPI for instructions:

Arithmetic 1.0 clock cycles
Data transfer 1.4 clock cycles
Conditional branch 1.7 clock cycles
Jump 1.2 clock cycles

Compute the effective CPI for MIPS. Average the instruction frequencies for
SPEC2000int and SPEC2000fp in Figure 2.48 on page 146 to obtain the instruc-

tion mix.

2.52 [20] <§2.18> [@ In More Depth: Instruction Set Styles

2.53 [20] <§2.18> [@, In More Depth: Instruction Set Styles

2.54 [10] <§2.18> [@] In More Depth: The Single Instruction Computer

2.55 [20] <§2.18> @ In More Depth: The Single Instruction Computer

2.56 [5] <§2.19>The stored-program concept, introduced in the late 1940s, brought

about a signiticant change in how computers were designed and operated. What is a
possible example of a nonstored-program machine, and what are the problems with
such a machine? How can these problems be overcome by a stored-program machine?

2.57
2.58
2.59

5] <§2.19> @] In More Depth: The IBM/Motorola versus MIPS in C
[15] <§2.19> [@] In More Depth: The IBM/Motorola versus MIPS in C

[15] <§2.19> @) In More Depth: Logical Instructions

Computers
in the

Helping Save Our

Environment with Data

Real World

Problem to solve: Monitor plants and ani-
mals of our environment to collect information
that may influence environmental polices.

Solution: Develop rugged, battery-operated,
embedded computers with sensors, wireless
communication, and appropriate software.

Stanford biologist Barbara Block studies
bluefin tuna. One policy question was whether
the tuna on one side of the Atlantic are differ-
ent from those on the other side. If so, then
each region could set its own quotas. If not,
then we need oceanwide quotas.

To answer this question, she started implant-
ing tuna with devices that could monitor their
journeys. Every two minutes a pop-up satellite
archival tag (PSAT) records water pressure,
ambient light, temperature, time of day, and

Block and students tag a bluefin tuna, which can
grow to 2000 pounds and 10 feet in length.

other measurements. Data are saved in 1 MB of
flash memory. The onboard 8-bit microproces-
sor estimates depth from the water pressure. It
finds longitude using light intensity data and
time of day. It determines sunrise, sunset, and
therefore high noon, and calculates the time shift
between local noon and Greenwich Mean Time
noon, like a navigator using a sextant and chro-
nometer. The water temperature is later matched
to satellite records to determine latitude. Block
does not rely on fishermen to catch the tuna and
return PSATS. A PSAT is attached to a fish with a
pin that dissolves via electrolysis after the com-
puter turns on a battery. The tag then floats to
the surface and begins transmitting data to satel-
lites. The floating tag can transmit for up to two
weeks, sending the data directly to Block’s lab.

A pop-up archival satellite tag and internal
electronics.

Block discovered that bluefin tuna travel more
than 10,000 miles per year; tuna tagged near the
East Coast of the United States will cross the
Atlantic and spawn in both the Gulf of Mexico
and the Eastern Mediterranean. Her discovery
changed regulations so that tuna are no longer
managed separately in the Eastern and Western
Atlantic. She is now developing a census of
Pacific marine life using smaller tags for smaller
animals and tags that transmit each time a fish
surfaces. She speculates that tagged tuna could
be ideal “vehicles” to monitor ocean change.

Berkeley biologist Todd Dawson studies the
ecology of the coastal redwood, Sequoia sem-
pervirens, particularly the interaction of sea
fog with trees. For years his research involved
installing 50 kilograms of gear and kilometers
of wire strung to sensors. This work is often
done more than 80 meters above the ground.
Data could only be retrieved by climbing up to
a printer-sized data logger.

Berkeley computer scientist David Culler
proposed a new approach. Dawson is now plac-
ing miniature wireless sensors the size of film

Professor Dawson and student climbing a sequoia
to install fog monitors.

canisters in these trees. Each micromote is less
than 3 cubic inches, can transmit up to 40 KB/
sec, and can run for months on a C battery.
Since micromotes are small and cheap, many
can be placed in a tree. Data is collected with a
compatible laptop by simply walking to the
base of the tree.

Dawson found that summertime fog
accounts for 25% to 40% of the water that the
redwoods receive for the whole year. The trees
may even be drinking water directly from fog
via a symbiotic relationship with fungi living
on their leaves.

Dawson predicts wireless sensor networks
will change the way people do ecological
research.

To learn more see these references on
the @ library

Block et al., “Migratory movements, depth preferences,

and thermal biology of atlantic bluefin tuna,” Science
293: 1310-14, 2001

“Redwoods,” Prof. Dawson’s laboratory site

“Redwood’s drinking water from fog,” The Forestry
Source, Nov. 2002

“Tagging of the Pacific Pelagics,” www.toppcensus.org

The Mica micromote with C battery. It is about the
size of a film canister.

