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Preface

Preface

The most beautiful thing we can experience is the mysterious.
It is the source of all true art and science.

Albert Einstein, What | Believe, 1930

About This Book

We believe that learning in computer science and engineering should reflect the
current state of the field, as well as introduce the principles that are shaping com-
puting. We also feel that readers in every specialty of computing need to appreci-
ate the organizational paradigms that determine the capabilities, performance,
and, ultimately, the success of computer systems.

Modern computer technology requires professionals of every computing spe-
cialty to understand both hardware and software. The interaction between hard-
ware and software at a variety of levels also offers a framework for understanding
the fundamentals of computing. Whether your primary interest is hardware or
software, computer science or electrical engineering, the central ideas in computer
organization and design are the same. Thus, our emphasis in this book is to show
the relationship between hardware and software and to focus on the concepts that
are the basis for current computers.

The audience for this book includes those with little experience in assembly
language or logic design who need to understand basic computer organization as
well as readers with backgrounds in assembly language and/or logic design who
want to learn how to design a computer or understand how a system works and
why it performs as it does.

About the Other Book

Some readers may be familiar with Computer Architecture: A Quantitative
Approach, popularly known as Hennessy and Patterson. (This book in turn is
called Patterson and Hennessy.) Our motivation in writing that book was to
describe the principles of computer architecture using solid engineering funda-
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mentals and quantitative cost/performance trade-offs. We used an approach that
combined examples and measurements, based on commercial systems, to create
realistic design experiences. Our goal was to demonstrate that computer architec-
ture could be learned using quantitative methodologies instead of a descriptive
approach. It is intended for the serious computing professional who wants a
detailed understanding of computers.

A majority of the readers for this book do not plan to become computer archi-
tects. The performance of future software systems will be dramatically affected,
however, by how well software designers understand the basic hardware tech-
niques at work in a system. Thus, compiler writers, operating system designers,
database programmers, and most other software engineers need a firm grounding
in the principles presented in this book. Similarly, hardware designers must
understand clearly the effects of their work on software applications.

Thus, we knew that this book had to be much more than a subset of the mate-
rial in Computer Architecture, and the material was extensively revised to match
the different audience. We were so happy with the result that the subsequent edi-
tions of Computer Architecture were revised to remove most of the introductory
material; hence, there is much less overlap today than with the first editions of

both books.

Changes for the Third Edition

We had six major goals for the third edition of Computer Organization and Design:
make the book work equally well for readers with a software focus or with a hard-
ware focus; improve pedagogy in general; enhance understanding of program per-
formance; update the technical content to reflect changes in the industry since the
publication of the second edition in 1998; tie the ideas from the book more closely
to the real world outside the computing industry; and reduce the size of this book.

First, the table on the next page shows the hardware and software paths through
the material. Chapters 1, 4, and 7 are found on both paths, no matter what the expe-
rience or the focus. Chapters 2 and 3 are likely to be review material for the hard-
ware-oriented, but are essential reading for the software-oriented, especially for
those readers interested in learning more about compilers and object-oriented pro-
gramming languages. The first sections of Chapters 5 and 6 give overviews for those
with a software focus. Those with a hardware focus, however, will find that these
chapters present core material; they may also, depending on background, want to
read Appendix B on logic design first and the sections on microprogramming and
how to use hardware description languages to specify control. Chapter 8 on
input/output is key to readers with a software focus and should be read if time per-
mits by others. The last chapter on multiprocessors and clusters is again a question
of time for the reader. Even the history sections show this balanced focus; they
include short histories of programming languages, compilers, numerical software,
operating systems, networking protocols, and databases.
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The next goal was to improve the exposition of the ideas in the book, based on
dithculties mentioned by readers of the second edition. We added five new book
elements to help. To make the book work better as a reference, we placed defini-
tions of new terms in the margins at their first occurrence. We hope this will help
readers find the sections when they want to refer back to material they have
already read. Another change was the insertion of the “Check Yourselt” sections,
which we added to help readers to check their comprehension of the material on
the first time through it. A third change is that added extra exercises in the “For
More Practice” section. Fourth, we added the answers to the “Check Yourselt” sec-
tions and to the For More Practice exercises to help readers see for themselves it
they understand the material by comparing their answers to the book. The final
new book element was inspired by the "Green Card" of the IBM System/360. We
believe that you will find that the MIPS Reference Data Card will be a handy refer-
ence when writing MIPS assembly language programs. Our idea is that you will
remove the card from the front of the book, fold it in half, and keep it in your
pocket, just as IBM S/360 programmers did in the 1960s.

Third, computers are so complex today that understanding the performance of
a program involves understanding a good deal about the underlying principles
and the organization of a given computer. Our goal is that readers of this book
should be able to understand the performance of their progams and how to
improve it. To aid in that goal, we added a new book element called “Understand-
ing Program Performance” in several chapters. These sections often give concrete
examples of how ideas in the chapter atfect performance of real programs.

Fourth, in the interval since the second edition of this book, Moore’s law has
marched onward so that we now have processors with 200 million transistors,
DRAM chips with a billion transistors, and clock rates of multiple gigahertz. The
“Real Stuft” examples have been updated to describe such chips. This edition also
includes AMD64/1A-32e, the 64-bit address version of the long-lived 80x86 archi-
tecture, which appears to be the nemesis of the more recent IA-64. It also reflects
the transition from parallel buses to serial networks and switches. Later chapters
describe Google, which was born after the second edition, in terms of its cluster
technology and in novel uses of search.

Fifth, although many computer science and engineering students enjoy infor-
mation technology for technology’s sake, some have more altruistic interests. This
latter group tends to have more women and underrepresented minorities. Conse-
quently, we have added a new book element, “Computers in the Real World,” two-
page layouts found between each chapter. Our perspective is that information
technology is more valuable for humanity than most other topics you could
study—whether it is preserving our art heritage, helping the Third World, saving
our environment, or even changing political systems—and so we demonstrate our
view with concrete examples of nontraditional applications. We think readers of
these segments will have a greater appreciation of the computing culture beyond
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the inherently interesting technology, much like those who read the history sec-
tions at the end of each chapter

Finally, books are like people: they usually get larger as they get older. By using
technology, we have managed to do all the above and yet shrink the page count by
hundreds of pages. As the table illustrates, the core portion of the book for hard-
ware and software readers is on paper, but sections that some readers would value
more than others are found on the companion CD. This technology also allows
your authors to provide longer histories and more extensive exercises without
concerns about lengthening the book. Once we added the CD to the book, we
could then include a great deal of free software and tutorials that many instructors
have told us they would like to use in their courses. This hybrid paper-CD publi-
cation weighs about 30% less than it did six years ago—an impressive goal for
books as well as for people.

Instructor Support

We have collected a great deal of material to help instructors teach courses using
this book. Solutions to exercises, figures from the book, lecture notes, lecture
slides, and other materials are available to adopters from the publisher. Check the
publisher’s Web site for more information:

www .mkp.com/companions/1558606041

Concluding Remarks

[f you read the following acknowledgments section, you will see that we went to
great lengths to correct mistakes. Since a book goes through many printings, we
have the opportunity to make even more corrections. If you uncover any remaining,
resilient bugs, please contact the publisher by electronic mail at cod3bugs@mkp.com
or by low-tech mail using the address found on the copyright page. The first person
to report a technical error will be awarded a $1.00 bounty upon its implementation
in future printings of the book!

This book is truly collaborative, despite one of us running a major university.
Together we brainstormed about the ideas and method of presentation, then indi-
vidually wrote about one-half of the chapters and acted as reviewer for every draft
of the other half. The page count suggests we again wrote almost exactly the same
number of pages. Thus, we equally share the blame for what you are about to read.

Acknowledgments for the Third Edition

We'd like to again express our appreciation to Jim Larus for his willingness in con-
tributing his expertise on assembly language programming, as well as for welcom-
ing readers of this book to use the simulator he developed and maintains. Our
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exercise editor Dan Sorin took on the Herculean task of adding new exercises and
answers. Peter Ashenden worked similarly hard to collect and organize the com-
panion CD.

We are gratetul to the many instructors who answered the publisher’s surveys,
reviewed our proposals, and attended focus groups to analyze and respond to our
plans for this edition. They include the following individuals: Michael Anderson
(University of Hartford), David Bader (University of New Mexico), Rusty Baldwin
(Air Force Institute of Technology), John Barr (Ithaca College), Jack Briner
(Charleston Southern University), Mats Brorsson (KTH, Sweden), Colin Brown
(Franklin University), Lori Carter (Point Loma Nazarene University), John Casey
(Northeastern University), Gene Chase (Messiah College), George Cheney (Univer-
sity of Massachusetts, Lowell), Daniel Citron (Jerusalem College of Technology,
Israel), Albert Cohen (INRIA, France), Lloyd Dickman (PathScale), Jose Duato
(Universidad Politécnica de Valencia, Spain), Ben Dugan (University of Washing-
ton), Derek Eager (University of Saskatchewan, Canada), Magnus Ekman (Chalm-
ers University of Technology, Sweden), Ata Elahi (Southern Connecticut State
University), Soundararajan Ezekiel (Indiana University of Pennsylvania), Ernest
Ferguson (Northwest Missouri State University), Michael Fry (Lebanon Valley Col-
lege, Pennsylvania), R. Gaede (University of Arkansas at Little Rock), Jean-Luc
Gaudiot (University of California, Irvine), Thomas Gendreau (University of Wis-
consin, La Crosse), George Georgiou (California State University, San Bernardino),
Paul Gillard (Memorial University of Newfoundland, Canada), Joe Grimes (Califor-
nia Polytechnic State University, SLO), Max Hailperin (Gustavus Adolphus Col-
lege), Jayantha Herath (St. Cloud State University, Minnesota), Mark Hill
(University of Wisconsin, Madison), Michael Hsaio (Virginia Tech), Richard
Hughey (University of California, Santa Cruz), Tony Jebara (Columbia University),
Elizabeth Johnson (Xavier University), Peter Kogge (University of Notre Dame),
Morris Lancaster (BAH), Doug Lawrence (University of Montana), David Lilja
(University of Minnesota), Nam Ling (Santa Clara University, California), Paul Lum
(Agilent Technologies), Stephen Mann (University of Waterloo, Canada), Diana
Marculescu (Carnegie Mellon University), Margaret McMahon (U.S. Naval Acad-
emy Computer Science), Uwe Meyer-Baese (Florida State University), Chris Milner
(University of Virginia), Tom Pittman (Southwest Baptist University), Jalel Rejeb
(San Jose State University, California), Bill Siever (University of Missouri, Rolla),
Kevin Skadron (University of Virginia), Pam Smallwood (Regis University, Colo-
rado), K. Stuart Smith (Rocky Mountain College), William J. Taffe (Plymouth State
University), Michael E. Thomodakis (Texas A&M University), Ruppa K. Thulasiram
(University of Manitoba, Canada), Ye Tung (University of South Alabama), Steve
VanderLeest (Calvin College), Neal R. Wagner (University of Texas at San Antonio),
and Kent Wilken (University of California, Davis).
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We are grateful too to those who carefully read our dratt manuscripts; some
read successive drafts to help ensure new errors didn’t creep in as we revised.
They include Krste Asanovic (Massachusetts Institute of Technology), Jean-Loup
Baer (University of Washington), David Brooks (Harvard University), Doug Clark
(Princeton University), Dan Connors (University of Colorado at Boulder), Matt
Farrens (University of California, Davis), Manoj Franklin (University of Maryland
College Park), John Greiner (Rice University), David Harris (Harvey Mudd Col-
lege), Paul Hilfinger (University of California, Berkeley), Norm Jouppi (Hewlett-
Packard), David Kaeli (Northeastern University), David Oppenheimer (University
of California, Berkeley), Timothy Pinkston (University of Southern California),
Mark Smotherman (Clemson University), and David Wood (University of Wis-
consin, Madison).

To help us meet our goal of creating 70% new exercises and solutions for this
edition, we recruited several graduate students recommended to us by their pro-
fessors. We are grateful for their creativity and persistence: Michael Black (Uni-
versity of Maryland), Lei Chen (University of Rochester), Nirav Dave
(Massachusetts Institute of Technology), Wael El Essawy (University of Roches-
ter), Nikil Mehta (Brown University), Nicholas Nelson (University of Rochester),
Aaron Smith (University of Texas, Austin), and Charlie Wang (Duke University).

We would like to especially thank Mark Smotherman for making a careful final
pass to find technical and writing glitches that significantly improved the quality
of this edition.

We wish to thank the extended Morgan Kaufmann family for agreeing to pub-
lish this book again under the able leadership of Denise Penrose. She developed
the vision of the hybrid paper-CD book and recruited the many people above who
played important roles in developing the book.

Simon Crump managed the book production process, and Summer Block
coordinated the surveying of users and their responses. We thank also the many
freelance vendors who contributed to this volume, especially Nancy Logan and
Dartmouth Publishing, Inc., our compositors.

The contributions of the nearly 100 people we mentioned here have made this
third edition our best book yet. Enjoy!

David A. Patterson John L. Hennessy
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Introduction

Welcome to this book! We're delighted to have this opportunity to convey the
excitement of the world of computer systems. This is not a dry and dreary field,
where progress is glacial and where new ideas atrophy from neglect. No! Comput-
ers are the product of the incredibly vibrant information technology industry, all
aspects of which are responsible for almost 10% of the gross national product of
the United States. This unusual industry embraces innovation at a breathtaking
rate. Since 1985 there have been a number of new computers whose introduction
appeared to revolutionize the computing industry; these revolutions were cut
short only because someone else built an even better computer.

This race to innovate has led to unprecedented progress since the inception of
electronic computing in the late 1940s. Had the transportation industry kept pace
with the computer industry, for example, today we could travel coast to coast in
about a second for roughly a few cents. Take just a moment to contemplate how
such an improvement would change society—living in Tahiti while working in
San Francisco, going to Moscow for an evening at the Bolshoi Ballet—and you can
appreciate the implications of such a change.
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Computers have led to a third revolution for civilization, with the information
revolution taking its place alongside the agricultural and the industrial revolu-
tions. The resulting multiplication of humankind’s intellectual strength and reach
naturally has affected our everyday lives profoundly and also changed the ways in
which the search for new knowledge is carried out. There is now a new vein of sci-
entific investigation, with computational scientists joining theoretical and experi-
mental scientists in the exploration of new frontiers in astronomy, biology,
chemistry, physics, . ..

The computer revolution continues. Each time the cost of computing improves
by another factor of 10, the opportunities for computers multiply. Applications
that were economically infeasible suddenly become practical. In the recent past,
the following applications were “computer science fiction.”

B Automatic teller machines: A computer placed in the wall of banks to dis-
tribute and collect cash would have been a ridiculous concept in the 1950s,
when the cheapest computer cost at least $500,000 and was the size of a car.

B Computers in automobiles: Until microprocessors improved dramatically in
price and performance in the early 1980s, computer control of cars was ludi-
crous. Today, computers reduce pollution and improve fuel ethciency via
engine controls and increase safety through the prevention of dangerous
skids and through the inflation of air bags to protect occupants in a crash.

B Laptop computers: Who would have dreamed that advances in computer
systems would lead to laptop computers, allowing students to bring com-
puters to coffechouses and on airplanes?

B Human genome project: The cost of computer equipment to map and ana-
lyze human DNA sequences is hundreds of millions of dollars. It's unlikely
that anyone would have considered this project had the computer costs been
10 to 100 times higher, as they would have been 10 to 20 years ago.

B World Wide Web: Not in existence at the time of the first edition of this
book, the World Wide Web has transtormed our society. Among its uses are
distributing news, sending flowers, buying from online catalogues, taking
electronic tours to help pick vacation spots, finding others who share your
esoteric interests, and even more mundane topics like finding the lecture
notes of the authors of your textbooks.

Clearly, advances in this technology now atfect almost every aspect of our society.
Hardware advances have allowed programmers to create wonderfully usetul soft-
ware, and explain why computers are omnipresent. Tomorrow’s science fiction
computer applications are the cashless society, automated intelligent highways,
and genuinely ubiquitous computing: no one carries computers because they are
available everywhere.
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Classes of Computing Applications and Their
Characteristics

Although a common set of hardware technologies (discussed in Sections 1.3 and
1.4) is used in computers ranging from smart home appliances to cell phones to
the largest supercomputers, these different applications have ditferent design
requirements and employ the core hardware technologies in different ways.
Broadly speaking, computers are used in three different classes of applications.

Desktop computers are possibly the best-known form of computing and are
characterized by the personal computer, which most readers of this book have
probably used extensively. Desktop computers emphasize delivering good pertor-
mance to a single user at low cost and usually are used to execute third-party soft-
ware, also called shrink-wrap software. Desktop computing is one of the largest
markets for computers, and the evolution of many computing technologies is
driven by this class of computing, which is only about 30 years old!

Servers are the modern form of what was once mainframes, minicomputers,
and supercomputers, and are usually accessed only via a network. Servers are ori-
ented to carrying large workloads, which may consist of either single complex
applications, usually a scientific or engineering application, or handling many
small jobs, such as would occur in building a large Web server. These applications
are often based on software from another source (such as a database or simulation
system ), but are often modified or customized for a particular function. Servers
are built from the same basic technology as desktop computers, but provide for
greater expandability of both computing and input/output capacity. As we will see
in the Chapter 4, the performance of a server can be measured in several different
ways, depending on the application of interest. In general, servers also place a
greater emphasis on dependability, since a crash is usually more costly than it
would be on a single-user desktop computer.

Servers span the widest range in cost and capability. At the low end, a server
may be little more than a desktop machine without a screen or keyboard and with
a cost of a thousand dollars. These low-end servers are typically used for file stor-
age, small business applications, or simple web serving. At the other extreme are
supercomputers, which at the present consist of hundreds to thousands of pro-
cessors, and usually gigabytes to terabytes of memory and terabytes to petabytes
of storage, and cost millions to hundreds of millions of dollars. Supercomputers
are usually used for high-end scientific and engineering calculations, such as
weather forecasting, oil exploration, protein structure determination, and other
large-scale problems. Although such supercomputers represent the peak of com-
puting capability, they are a relatively small fraction of the servers and a relatively
small fraction of the overall computer market in terms of total revenue.

Embedded computers are the largest class of computers and span the widest
range of applications and performance. Embedded computers include the micro-
processors found in your washing machine and car, the computers in a cell phone

desktop computer A com-
puter designed for use by an
individual, usually incorporat-
ing a graphics display, keyboard,
and mouse.

Server A computer used for
running larger programs for
multiple users often simulta-
neously and typically accessed
only via a network.

supercomputer A class of
computers with the highest per-
formance and cost; they are
configured as servers and typi-
cally cost millions of dollars.

terabyte Originally
1,099,511,627,776 (2%°) bytes,
although some communications
and secondary storage systems
have redefined it to mean
1,000,000,000,000 (10") bytes.

embedded computer A com-
puter inside another device used
for running one predetermined
application or collection of soft-
ware.
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or personal digital assistant, the computers in a video game or digital television,
and the networks of processors that control a modern airplane or cargo ship.
Embedded computing systems are designed to run one application or one set of
related applications, which is normally integrated with the hardware and delivered
as a single system; thus, despite the large number of embedded computers, most
users never really see that they are using a computer!

Embedded applications often have unique application requirements that com-
bine a minimum performance with stringent limitations on cost or power. For
example, consider a cell phone: the processor need only be as fast as necessary to
handle its limited function, and beyond that, minimizing cost and power are the
most important objectives. Despite their low cost, embedded computers often
have the least tolerance for failure, since the results can vary from upsetting (when
your new television crashes) to devastating (such as might occur when the com-
puter in a plane or car crashes). In consumer-oriented embedded applications,
such as a digital home appliance, dependability is achieved primarily through
simplicity—the emphasis is on doing one function, as perfectly as possible. In
large embedded systems, techniques of redundancy, which are used in servers, are
often employed. Although this book focuses on general-purpose computers, most
of the concepts apply directly, or with slight modifications, to embedded comput-
ers. In several places, we will touch on some of the unique aspects of embedded
computers.

Figure 1.1 shows that during the last several years, the growth in the number of
embedded computers has been much faster (40% compounded annual growth
rate) than the growth rate among desktop computers and servers (9% annually).
Note that the embedded computers include cell phones, video games, digital TVs
and set-top boxes, personal digital assistants, and a variety of such consumer
devices. Note that this data does not include low-end embedded control devices
that use 8-bit and 16-bit processors.

Elaboration: Elaborations are short sections used throughout the text to provide
more detail on a particular subject, which may be of interest. Disinterested readers
may skip over an elaboration, since the subsequent material will never depend on the
contents of the elaboration.

Many embedded processors are designed using processor cores, a version of a pro-
cessor written in a hardware description language such as Verilog or VHDL. The core
allows a designer to integrate other application-specific hardware with the processor
core for fabrication on a single chip. The availability of synthesis tools that can gener-
ate a chip from a Verilog specification, together with the capacity of modern silicon
chips, has made such special-purpose processors highly attractive. Since the core can
be synthesized for different semiconductor manufacturing lines, using a core provides
flexibility in choosing a manufacturer as well. In the last few years, the use of cores has
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FIGURE 1.1 The number of distinct processors sold hetween 1998 and 2002. These counts
are obtained somewhat differently, so some caution is required in interpreting the results. For example, the
totals for desktops and servers count complete computer systems, because some fraction of these include
multiple processors, the number of processors sold is somewhat higher, but probably by only 10-20% in
total (since the servers, which may average more than one processor per system, are only about 3% of the
desktop sales, which are predominantly single-processor systems). The totals for embedded computers actu-
ally count processors, many of which are not even visible, and in some cases there may be multiple proces-
sors per device.

been growing very fast. For example, in 1998 only 31% of the embedded processors
were cores. By 2002, 56% of the embedded processors were cores. Furthermore,
while the overall growth rate in the embedded market has been 40% per year, this
growth has been primarily driven by cores, where the compounded annual growth rate
has been 63%!

Figure 1.2 shows the major architectures sold in these markets with counts for
each architecture, across all three types of products (embedded, desktop, and
server). Only 32-bit and 64-bit processors are included, although 32-bit proces-
sors are the vast majority for most of the architectures.
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FIGURE 1.2 Sales of microprocessors hetween 1998 and 2002 by instruction set archi-
tecture combining all uses. The “other” category refers to processors that are either application-
specific or customized architectures. In the case of ARM, roughly 80% of the sales are for cell phones, where
an ARM core is used in conjunction with application-specific logic on a chip.

What You Can Learn in This Book

Successful programmers have always been concerned about the performance of
their programs because getting results to the user quickly is critical in creating
successful software. In the 1960s and 1970s, a primary constraint on computer
performance was the size of the computer’s memory. Thus programmers often
followed a simple credo: Minimize memory space to make programs fast. In the
last decade, advances in computer design and memory technology have greatly
reduced the importance of small memory size in most applications other than
those in embedded computing systems.

Programmers interested in performance now need to understand the issues
that have replaced the simple memory model of the 1960s: the hierarchical nature
of memories and the parallel nature of processors. Programmers who seek to
build competitive versions of compilers, operating systems, databases, and even
applications will therefore need to increase their knowledge of computer organi-
zation.
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We are honored to have the opportunity to explain what’s inside this rev-
olutionary machine, unraveling the software below your program and the hard-
ware under the covers of your computer. By the time you complete this book, we
believe you will be able to answer the following questions:

B How are programs written in a high-level language, such as C or Java, trans-
lated into the language of the hardware, and how does the hardware execute
the resulting program? Comprehending these concepts forms the basis of
understanding the aspects of both the hardware and software that affect pro-
gram performance.

B What is the interface between the software and the hardware, and how does
software instruct the hardware to perform needed functions? These con-
cepts are vital to understanding how to write many kinds of software.

B What determines the performance of a program, and how can a program-
mer improve the performance? As we will see, this depends on the original
program, the software translation of that program into the computer’s lan-
guage, and the effectiveness of the hardware in executing the program.

B What techniques can be used by hardware designers to improve perfor-
mance? This book will introduce the basic concepts of modern computer
design. The interested reader will ind much more material on this topic in
our advanced book, A Computer Architecture: A Quantitative Approach.

Without understanding the answers to these questions, improving the pertfor-
mance of your program on a modern computer, or evaluating what features might
make one computer better than another for a particular application, will be a
complex process of trial and error, rather than a scientific procedure driven by
insight and analysis.

This first chapter lays the foundation for the rest of the book. It introduces the
basic ideas and definitions, places the major components of software and hard-
ware in perspective, and introduces integrated circuits, the technology that fuels
the computer revolution. In this chapter, and later ones, you will likely see a lot of
new words, or words that you may have heard, but are not sure what they mean.
Don't panic! Yes, there is a lot of special terminology used in describing modern
computers, but the terminology actually helps since it enables us to describe pre-
cisely a function or capability. In addition, computer designers (including your
authors) love using acronyms, which are easy to understand once you know what
the letters stand for! To help you remember and locate terms, we have included a
highlighted definition of every term, the first time it appears in the text. After a
short time of working with the terminology, you will be fluent, and your friends

acronym A word constructed
by taking the initial letters of
string of words. For example:
RAM is an acronym for Ran-
dom Access Memory, and CPU
is an acronym for Central Pro-
cessing Unit.
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will be impressed as you correctly use words such as BIOS, DIMM, CPU, cache,
DRAM, ATA, PCI, and many others.

To reinforce how the software and hardware systems used to run a program will
affect performance, we use a special section, “Understanding Program Perfor-
mance, throughout the book, with the first one appearing below. These elements
summarize important insights into program performance.

Understanding
Program
Performance

Check
Yourself

The performance of a program depends on a combination of the effectiveness of
the algorithms used in the program, the software systems used to create and trans-
late the program into machine instructions, and the effectiveness of the computer
in executing those instructions, which may include I/O operations. The following
table summarizes how the hardware and software affect performance.

Hardware or software How this component affecis Where is this
component performance topic covered?

Algorithm Determines both the number of source-level Other books!
statements and the number of |/0 operations
executed
Programming language, Determines the number of machine instructions | Chapters 2 and 3
compiler, and architecture for each source-evel statement
Processor and memory Determines how fast instructions can be Chapters 5, 6,
system executed and 7
I/0 system (hardware and Determines how fast |/O operations may be Chapter 8
operating system) executed

“Check Yourselt” sections are designed to help readers assess whether they have
comprehended the major concepts introduced in a chapter and understand the
implications of those concepts. Some “Check Yourselt” questions have simple
answers; others are for discussion among a group. Answers to the specific ques-
tions can be found at the end of the chapter. “Check Yourselt” questions appear
only at the end of a section, making it easy to skip them if you are sure you under-
stand the material.

1. Section 1.1 showed that the number of embedded processors sold every
year greatly outnumbers the number of desktop processors. Can you con-
firm or deny this insight based on your own experience? Try to count the
number of embedded processors in your home. How does it compare with
the number of desktop computers in your home?
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2. As mentioned earlier, both the software and hardware affect the perfor-
mance of a program. Can you think of examples where each of the follow-
ing is the right place to look for a performance bottleneck?

B The algorithm chosen
The programming language or compiler
The operating system

]
]
B The processor
]

The 1/0 system and devices

Below Your Program

A typical application, such as a word processor or a large database system, may
consist of hundreds of thousands to millions of lines of code and rely on sophisti-
cated software libraries that implement complex functions in support of the
application. As we will see, the hardware in a computer can only execute extremely
simple low-level instructions. To go from a complex application to the simple
instructions involves several layers of software that interpret or translate high-
level operations into simple computer instructions.

These layers of software are organized primarily in a hierarchical tfashion, with
applications being the outermost ring and a variety of systems software sitting
between the hardware and applications software, as shown in Figure 1.3.

There are many types of systems software, but two types of systems software are
central to every computer system today: an operating system and a compiler. An
operating system interfaces between a user’s program and the hardware and pro-
vides a variety of services and supervisory functions. Among the most important
functions are

B handling basic input and output operations
B allocating storage and memory

B providing for sharing the computer among multiple applications using it
simultaneously

Examples of operating systems in use today are Windows, Linux, and MacOS.
Compilers perform another vital function: the translation of a program writ-
ten in a high-level language, such as C or Java, into instructions that the hardware

In Paris they simply stared
when I spoke to them in
French; I never did succeed
in making those idiots
understand their own lan-

guage.
Mark Twain, The Innocents
Abroad, 1869

systems software Software
that provides services that are
commonly useful, including
operating systems, compilers,
and assemblers.

operating system Supervising
program that manages the
resources of a computer for the
benefit of the programs that run
on that machine.

compiler A program that
translates high-level language
statements into assembly
language statements.
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binary digit Also called a bit.
One of the two numbers in base
2 (0 or 1) that are the compo-
nents of information.
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FIGURE 1.3 A simplified view of hardware and software as hierarchical layers, shown as
concentric circles with hardware in the center and applications software outermost. In
complex applications there are often multiple layers of application software as well. For example, a database
system may run on top of the systems software hosting an application, which in turn runs on top of the
database.

can execute. Given the sophistication of modern programming languages and the
simple instructions executed by the hardware, the translation from a high-level
language program to hardware instructions is complex. We will give a brief over-
view of the process and return to the subject in Chapter 2.

From a High-Level Language to the Language of Hardware

To actually speak to an electronic machine, you need to send electrical signals. The
easiest signals for machines to understand are on and off, and so the machine
alphabet is just two letters. Just as the 26 letters of the English alphabet do not
limit how much can be written, the two letters of the computer alphabet do not
limit what computers can do. The two symbols for these two letters are the num-
bers 0 and 1, and we commonly think of the machine language as numbers in base
2, or binary numbers. We refer to each “letter” as a binary digit or bit. Computers
are slaves to our commands, which are called instructions. Instructions, which are
just collections of bits that the computer understands, can be thought of as num-
bers. For example, the bits

1000110010100000

tell one computer to add two numbers. Chapter 3 explains why we use numbers
for instructions and data; we don’t want to steal that chapter’s thunder, but using
numbers for both instructions and data is a foundation of computing.
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The first programmers communicated to computers in binary numbers, but
this was so tedious that they quickly invented new notations that were closer to
the way humans think. At first these notations were translated to binary by hand,
but this process was still tiresome. Using the machine to help program the
machine, the pioneers invented programs to translate from symbolic notation to
binary. The first of these programs was named an assembler. This program trans-
lates a symbolic version of an instruction into the binary version. For example, the
programmer would write

add A,B

and the assembler would translate this notation into

1000110010100000

This instruction tells the computer to add the two numbers A and B. The name
coined for this symbolic language, still used today, is assembly language.

Although a tremendous improvement, assembly language is still far from the
notation a scientist might like to use to simulate fluid flow or that an accountant
might use to balance the books. Assembly language requires the programmer to
write one line for every instruction that the machine will follow, forcing the pro-
grammer to think like the machine.

The recognition that a program could be written to translate a more powerful
language into computer instructions was one of the great breakthroughs in the
early days of computing. Programmers today owe their productivity—and their
sanity—to the creation of high-level programming languages and compilers that
translate programs in such languages into instructions.

A compiler enables a programmer to write this high-level language expression:

A+ B
The compiler would compile it into this assembly language statement:

add A,B

The assembler would translate this statement into the binary instruction that tells
the computer to add the two numbers A and B:

1000110010100000

Figure 1.4 shows the relationships among these programs and languages.
High-level programming languages offer several important benefits. First, they
allow the programmer to think in a more natural language, using English words
and algebraic notation, resulting in programs that look much more like text than
like tables of cryptic symbols (see Figure 1.4). Moreover, they allow languages to

assembler A program that
translates a symbolic version of
instructions into the binary ver-
sion.

assembly language A sym-
bolic representation of machine
instructions.

high-level programming
language A portable language
such as C, Fortran, or Java com-
posed of words and algebraic
notation that can be translated
by a compiler into assembly
language.
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High-level swap(int v[], int k)
language {int temp;

program temp = v[k];

(in C) vik]l = v[k+11;

vik+1] = temp;

=

Ii li]a':n~m|:-ilnar?;I
Assembly swap:
language muli $2, $5.4
program add $2, $4.%2
(for MIPS) lw  $15, 0(%2)
lw  $16, 4(%2)
sw  $16, 0(%2)
sw  $15, 4(%2)
jr $31
Ii_Assemhle_rE'

o

|

Binary machine 00000000101000010000000000011000

language 00000000000110000001100000100001
program 10001100011000100000000000000000
(for MIPS) 10001100111100100000000000000100

10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

FIGURE 1.4 C program compiled into assembly language and then assembled into
binary machine language. Although the translation from high-level language to binary machine lan-
guage is shown in two steps, some compilers cut out the middleman and produce binary machine language
directly. These languages and this program are examined in more detail in Chapter 2.

be designed according to their intended use. Hence, Fortran was designed for sci-
entific computation, Cobol for business data processing, Lisp for symbol manipu-
lation, and so on.

The second advantage of programming languages is improved programmer
productivity. One of the few areas of widespread agreement in software develop-
ment is that it takes less time to develop programs when they are written in lan-
guages that require fewer lines to express an idea. Conciseness is a clear advantage
of high-level languages over assembly language.
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The final advantage is that programming languages allow programs to be inde-
pendent of the computer on which they were developed, since compilers and
assemblers can translate high-level language programs to the binary instructions
of any machine. These three advantages are so strong that today little program-
ming is done in assembly language.

Under the Covers

Now that we have looked below your program to uncover the underlying software,
let’s open the covers of the computer to learn about the underlying hardware. The
underlying hardware in any computer performs the same basic functions: input-
ting data, outputting data, processing data, and storing data. How these functions
are performed is the primary topic of this book, and subsequent chapters deal
with different parts of these four tasks. When we come to an important point in
this book, a point so important that we hope you will remember it forever, we
emphasize it by identifying it as a “Big Picture” item. We have about a dozen Big
Pictures in this book, with the first being the five components of a computer that
perform the tasks of inputting, outputting, processing, and storing data.

The five classic components of a computer are input, output, memory,
datapath, and control, with the last two sometimes combined and called
the processor. Figure 1.5 shows the standard organization of a computer.
This organization is independent of hardware technology: You can place
every piece of every computer, past and present, into one of these five cat-
egories. To help you keep all this in perspective, the five components of a
computer are shown on the front page of the following chapters, with the
portion of interest to that chapter highlighted.

Figure 1.6 shows a typical desktop computer with keyboard, mouse, screen,
and a box containing even more hardware. What is not visible in the photograph
is a network that connects the computer to other computers. This photograph
reveals two of the key components of computers: input devices, such as the key-
board and mouse, and output devices, such as the screen. As the names suggest,
input feeds the computer, and output is the result of computation sent to the user.
Some devices, such as networks and disks, provide both input and output to the
computer.

mhe BIG

Picture

input device A mechanism
through which the computer is
fed information, such as the
keyboard or mouse.

output device A mechanism
that conveys the result of a com-
putation to a user or another
computer.
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I got the idea for the mouse
while attending a talk at a
computer conference. The
speaker was so boring that I
started daydreaming and hit
upon the idea.

Doug Engelbart

Compiler
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Interface

Computer

L
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FIGURE 1.5 The organization of a computer, showing the five classic components. The
processor gets instructions and data from memory. Input writes data to memory, and output reads data
from memory. Control sends the signals that determine the operations of the datapath, memory, input, and
output.

Chapter 8 describes input/output (I/O) devices in more detail, but let’s take an
introductory tour through the computer hardware, starting with the external I/O
devices.

Anatomy of a Mouse

Although many users now take mice for granted, the idea of a pointing device
such as a mouse was first shown by Engelbart using a research prototype in 1967.
The Alto, which was the inspiration for all workstations as well as for the Macin-
tosh, included a mouse as its pointing device in 1973. By the 1990s, all desktop
computers included this device, and new user interfaces based on graphics dis-
plays and mice became the norm.
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FIGURE 1.6 A desktop computer. The liquid crystal display (LCD) screen is the primary output
device, and the keyboard and mouse are the primary input devices. The box contains the processor as well
as additional I/O devices. This system is a Dell Optiplex GX260.

The original mouse was electromechanical and used a large ball that when
rolled across a surface would cause an x and y counter to be incremented. The
amount of increase in each counter told how far the mouse had been moved.

The electromechanical mouse has largely been replaced by the newer all-optical
mouse. The optical mouse is actually a miniature optical processor including an
LED to provide lighting, a tiny black-and-white camera, and a simple optical pro-
cessor. The LED illuminates the surface underneath the mouse; the camera takes
1500 sample pictures a second under the illumination. Successive pictures are sent
to a simple optical processor that compares the images and determines whether
the mouse has moved and how far. The replacement of the electromechanical
mouse by the electro-optical mouse is an illustration of a common phenomenon
where the decreasing costs and higher reliability of electronics cause an electronic
solution to replace the older electromechanical technology.
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Through computer displays
I have landed an airplane on
the deck of a moving carrier,
observed a nuclear particle
hit a potential well, flown in
a rocket at nearly the speed
of light and watched a com-
puter reveal its innermost
workings.

Ivan Sutherland, the “father”
of computer graphics, quoted
in “Computer Software for

Graphics,” Scientific American,
1984

cathode ray tube (CRT)
display A display, suchasa
television set, that displays an
image using an electron beam
scanned across a screen.

pixel The smallest individual
picture element. Screen are
composed of hundreds of thou-
sands to millions of pixels, orga-
nized in a matrix.

flat panel display, liquid crys-
tal display A display technol-
ogy using a thin layer of liquid
polymers that can be used to
transmit or block light accord-
ing to whether a charge is
applied.

active matrix display A liquid
crystal display using a transistor
to control the transmission of
light at each individual pixel.

Through the Looking Glass

The most fascinating I/O device is probably the graphics display. Based on televi-
sion technology, a cathode ray tube (CRT) display scans an image one line at a
time, 30 to 75 times per second. At this refresh rate, people don'’t notice a flicker on
the screen.

The image is composed of a matrix of picture elements, or pixels, which can be
represented as a matrix of bits, called a bit map. Depending on the size of the
screen and the resolution, the display matrix ranges in size from 512 X 340 to
1920 x 1280 pixels in 2003. The simplest display has 1 bit per pixel, allowing it to
be black or white. For displays that support 256 different shades of black and
white, sometimes called gray-scale displays, 8 bits per pixel are required. A color
display might use 8 bits for each of the three colors (red, blue, and green), for
24 bits per pixel, permitting millions of different colors to be displayed.

All laptop and handheld computers, calculators, cellular phones, and many
desktop computers use flat-panel or liquid crystal displays (LCDs) instead of
CRTs to get a thin, low-power display. The main difference is that the LCD pixel is
not the source of light; instead it controls the transmission of light. A typical LCD
includes rod-shaped molecules in a liquid that form a twisting helix that bends
light entering the display, from either a light source behind the display or less
often from reflected light. The rods straighten out when a current is applied and
no longer bend the light; since the liquid crystal material is between two screens
polarized at 90 degrees, the light cannot pass through unless it is bent. Today,
most LCD displays use an active matrix that has a tiny transistor switch at each
pixel to precisely control current and make sharper images. As in a CRT, a red-
green-blue mask associated with each pixel determines the intensity of the three
color components in the final image; in a color active matrix LCD, there are three
transistor switches at each pixel.

No matter what the display, the computer hardware support for graphics con-
sists mainly of a raster refresh buffer, or frame buffer, to store the bit map. The
image to be represented on-screen is stored in the frame bufter, and the bit pattern
per pixel is read out to the graphics display at the refresh rate. Figure 1.7 shows a
frame bufter with 4 bits per pixel.

The goal of the bit map is to faithfully represent what is on the screen. The
challenges in graphics systems arise because the human eye is very good at
detecting even subtle changes on the screen. For example, when the screen is being
updated, the eye can detect the inconsistency between the portion of the screen
that has changed and that which hasn't.

Opening the Box

If we open the box containing the computer, we see a fascinating board of thin
green plastic, covered with dozens of small gray or black rectangles. Figure 1.8
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FIGURE 1.7 Each coordinate in the frame buffer on the left determines the shade of the
corresponding coordinate for the raster scan CRT display on the right. Pixel (X;, Y,) contains
the bit pattern 0011, which is a lighter shade of gray on the screen than the bit pattern 1101 in pixel (X4, Y{).

DVD drive
power supply
Zip drive
fan with cover
motherboard
Hard
drive

FIGURE 1.8 Inside the personal computer of Figure 1.6 on page 17. This packaging is sometimes called a clamshell because of the way
it opens with hinges on one side. To see what’s inside, let’s start on the top left-hand side. The shiny metal box on the top far left side is the power sup-
ply. Just below that on the far left is the fan, with its cover pulled back. To the right and below the fan is a printed circuit board (PC board), called the
motherboard in a PC, that contains most of the electronics of the computer; Figure 1.10 is a close-up of that board. The processor is the large raised
rectangle just to the right of the fan. On the right side we see the bays designed to hold types of disk drives. The top bay contains a DVD drive, the mid-
dle bay a Zip drive, and the bottom bay contains a hard disk.
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motherboard A plastic board
containing packages of
integrated circuits or chips,
including processor, cache,
memory, and connectors for I/O
devices such as networks and

disks.

integrated circuit Also called
chip. A device combining doz-
ens to millions of transistors.

memory The storage area in
which programs are kept when
they are running and that con-
tains the data needed by the
running programs.

central processor unit (CPU)
Also called processor. The active
part of the computer, which
contains the datapath and con-
trol and which adds numbers,
tests numbers, signals I/O
devices to activate, and so on.

datapath The component of
the processor that performs
arithmetic operations.

control The component of the
processor that commands the
datapath, memory, and I/O
devices according to the instruc-
tions of the program.

dynamic random access
memory (DRAM) Memory
built as an integrated circuit, it
provides random access to any
location.

cache memory A small, fast
memory that acts as a buffer for
a slower, larger memory.

shows the contents of the desktop computer in Figure 1.6. This motherboard is
shown vertically on the left with the power supply. Three disk drives—a DVD
drive, Zip drive, and hard drive—appear on the right.

The small rectangles on the motherboard contain the devices that drive our
advancing technology, integrated circuits or chips. The board is composed of
three pieces: the piece connecting to the I/O devices mentioned earlier, the mem-
ory, and the processor. The I/O devices are connected via the two large boards
attached perpendicularly to the motherboard toward the middle on the right-
hand side.

The memory is where the programs are kept when they are running; it also
contains the data needed by the running programs. In Figure 1.8, memory is
found on the two small boards that are attached perpendicularly toward the mid-
dle of the motherboard. Each small memory board contains eight integrated cir-
cuits.

The processor is the active part of the board, following the instructions of a pro-
gram to the letter. It adds numbers, tests numbers, signals I/O devices to activate,
and so on. The processor is the large square below the memory boards in the
lower-right corner of Figure 1.8. Occasionally, people call the processor the CPU,
for the more bureaucratic-sounding central processor unit.

Descending even lower into the hardware, Figure 1.9 reveals details of the pro-
cessor in Figure 1.8. The processor comprises two main components: datapath
and control, the respective brawn and brain of the processor. The datapath per-
forms the arithmetic operations, and control tells the datapath, memory, and I/O
devices what to do according to the wishes of the instructions of the program.
Chapter 5 explains the datapath and control for a straightforward implementa-
tion, and Chapter 6 describes the changes needed for a higher-performance
design.

Descending into the depths of any component of the hardware reveals insights
into the machine. The memory in Figure 1.10 is built from DRAM chips. DRAM
stands for dynamic random access memory. Several DRAMs are used together to
contain the instructions and data of a program. In contrast to sequential access
memories such as magnetic tapes, the RAM portion of the term DRAM means
that memory accesses take the same amount of time no matter what portion of
the memory is read. Inside the processor is another type of memory—cache
memory. Cache memory consists of a small, fast memory that acts as a bufter for
the DRAM memory. (The nontechnical definition of cache is a sate place for hid-
ing things.) Cache is built using a different memory technology, static random
access memory (SRAM). SRAM is faster but less dense, and hence more expen-

sive, than DRAM.
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FIGURE 1.9 Inside the processor chip used on the board shown in Figure 1.8. The left-hand side is a microphotograph of the Pentium
4 processor chip, and the right-hand side shows the major blocks in the processor.

You may have noticed a common theme in both the software and the hardware
descriptions: delving into the depths of hardware or software reveals more infor-
mation or, conversely, lower-level details are hidden to offer a simpler model at
higher‘levelsi The use :::-f such layers, or abstractions, is a principal technique for ders lower-level details of corm.
designing very sophisticated computer systems. T I

One of the most important abstractions is the interface between the hardware invisible in order to facilitate
and the lowest-level software. Because of its importance, it is given a special design of sophisticated systems.

abstraction A model that ren-



22

Chapter 1 Computer Abstractions and Technology

DIMM (dual inline memory
module) A small board that
contains DRAM chips on both
sides. SIMMs have DRAMs on
only one side. Both DIMMs and
SIMMs are meant to be plugged
into memory slots, usually on a
motherboard.

instruction set architecture
Also called architecture. An
abstract interface between the
hardware and the lowest level
software of a machine that
encompasses all the information
necessary to write a machine
language program that will run
correctly, including instruc-
tions, registers, memory access,
/0, and so on.

application binary interface
(ABI) The user portion of the
instruction set plus the operat-
ing system interfaces used by
application programmers.
Defines a standard for binary
portability across computers.

implementation Hardware
that obeys the architecture
abstraction.

Processor M
e
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r
Y Disk
Processor and USB
interface interfaces
Graphics
1/0 bus
slots

FIGURE 1.10 Close-up of PC motherboard. This board uses the Intel Pentium 4 processor, which is
located on the left-upper quadrant of the board. It is covered by a set of metal fins, which look like a radia-
tor. This structure is the hear sink, used to help cool the chip. The main memory is contained on one or
more small boards that are perpendicular to the motherboard near the middle. The DRAM chips are
mounted on these boards (called DINMMs, for dual inline memory modules) and then plugged into the con-
nectors. Much of the rest of the board comprises connectors for external I/O devices: audio/MIDI and par-
allel/serial at the right edge, two PCI card slots near the bottom, and an ATA connector used for attaching
hard disks.

name: the instruction set architecture, or simply architecture, of a machine.
The instruction set architecture includes anything programmers need to know to
make a binary machine language program work correctly, including instructions,
I/O devices, and so on. Typically the operating system will encapsulate the details
of doing I/O, allocating memory, and other low-level system functions, so that
application programmers do not need to worry about such details. The combina-
tion of the basic instruction set and the operating system interface provided for
application programmers is called the application binary interface (ABI).

An instruction set architecture allows computer designers to talk about func-
tions independently from the hardware that performs them. For example, we can
talk about the functions of a digital clock (keeping time, displaying the time, set-
ting the alarm) independently from the clock hardware (quartz crystal, LED dis-
plays, plastic buttons). Computer designers distinguish architecture from an
implementation of an architecture along the same lines: an implementation is
hardware that obeys the architecture abstraction. These ideas bring us to another
Big Picture.
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A Safe Place for Data

Thus far we have seen how to input data, compute using the data, and display
data. It we were to lose power to the computer, however, everything would be lost
because the memory inside the computer is volatile—that is, when it loses power,
it forgets. In contrast, a cassette tape for a stereo doesn’t forget the recorded music
when you turn off the power because the tape is magnetic and is thus a nonvola-
tile memory technology.

To distinguish between the memory used to hold programs while they are run-
ning and this nonvolatile memory used to store programs between runs, the term
primary memory or main memory is used for the former, and secondary mem-
ory for the latter. DRAMSs have dominated main memory since 1975, but mag-
netic disks have dominated secondary memory since 1965. In embedded
applications, FLASH, a nonvolatile semiconductor memory is also used.

Today the primary nonvolatile storage used on all desktop and server comput-
ers is the magnetic hard disk. As Figure 1.11 shows, a magnetic hard disk consists
of a collection of platters, which rotate on a spindle at 5400 to 15,000 revolutions
per minute. The metal platters are covered with magnetic recording material on
both sides, similar to the material found on a cassette or video tape. To read and
write information on a hard disk, a movable arm containing a small electromag-
netic coil called a read/write head is located just above each surface. The entire
drive is permanently sealed to control the environment inside the drive, which, in
turn, allows the disk heads to be much closer to the drive surface.

Diameters of hard disks vary by more than a factor of 3 today, from less than 1
inch to 3.5 inches, and have been shrunk over the years to fit into new products;
workstation servers, personal computers, laptops, palmtops, and digital cameras
have all inspired new disk form factors. Traditionally, the widest disks have the
highest performance, the smallest disks have the lowest unit cost, and the best cost
per megabyte is usually a disk in between. Although most hard drives appear
inside computers (as in Figure 1.8), hard drives can also be attached using external
interfaces such as Firewire or USB.

The use of mechanical components means that access times for magnetic disks
are much slower than for DRAMSs: disks typically take 5-15 milliseconds, while
DRAMs take 40-80 nanoseconds—making DRAMs about 100,000 times faster.
Yet disks have much lower costs than DRAM for the same storage capacity because
the production costs for a given amount of disk storage are lower than for the
same amount of integrated circuit. In 2004, the cost per megabyte of disk is about
100 times less expensive than DRAM.

Thus there are three primary difterences between magnetic disks and main
memory: disks are nonvolatile because they are magnetic; they have a slower
access time because they are mechanical devices; and they are cheaper per mega-
byte because they have very high storage capacity at a modest cost.

memory The storage area in
which programs are kept when
they are running and that con-
tains the data needed by the
running programs.

volatile memory Storage, such
as DRAM, that only retains data
only if it is receiving power.

nonvolatile memory A form
of memory that retains data
even in the absence of a power
source and that is used to store
programs between runs. Mag-
netic disk is nonvolatile and

DRAM is not.

primary memory Also called
main memory. Volatile memory
used to hold programs while
they are running; typically
consists of DRAM in today’s
computers.

secondary memory Non-
volatile memory used to store
programs and data between
runs; typically consists of mag-
netic disks in today’s computers.

magnetic disk (also called
hard disk) A form of nonvola-
tile secondary memory com-
posed of rotating platters coated
with a magnetic recording
material.

megabyte Traditionally
1,048,576 (2%°) bytes, although
some communications and sec-
ondary storage systems have
redefined it to mean 1,000,000
(10°) bytes.
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the BIG

Picture

G —~ &

FIGURE 1.11 A disk showing 10 disk platters and the read/write heads.

Both hardware and software consist of hierarchical layers, with each
lower layer hiding details from the level above. This principle of abstrac-
tion is the way both hardware designers and software designers cope with
the complexity of computer systems. One key interface between the levels
of abstraction is the instruction set architecture—the interface between the
hardware and low-level software. This abstract interface enables many
implementations of varying cost and performance to run identical soft-
ware.
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Although hard drives are not removable, there are several storage technologies
in use that include the following;

B Optical disks, including both compact disks (CDs) and digital video disks
(DVDs), constitute the most common form of removable storage.

B Magnetic tape provides only slow serial access and has been used to back up
disks, in a role now often replaced by duplicate hard drives.

B FLASH-based removable memory cards typically attach by a USB (Universal
Serial Bus) connection and are often used to transfer files.

B Floppy drives and Zip drives are a version of magnetic disk technology with
removable flexible disks. Floppy disks were the original primary storage for
personal computers, but have now largely vanished.

Optical disk technology works in a completely different way than magnetic disk
technology. In a CD, data is recorded in a spiral fashion, with individual bits being
recorded by burning small pits—approximately 1 micron (107 meters) in diame-
ter—into the disk surface. The disk is read by shining a laser at the CD surface and
determining by examining the reflected light whether there is a pit or flat (retlec-
tive) surface. DVDs use the same approach of bouncing a laser beam oft a series of
pits and flat surfaces. In addition, there are multiple layers that the laser beam can
be focused on, and the size of each bit is much smaller, which together yield a sig-
nificant increase in capacity.

CD and DVD writers in personal computers use a laser to make the pits in the
recording layer on the CD or DVD surface. This writing process is relatively slow,
taking from tens of minutes (for a full CD) to close to an hour (for a full DVD).
Thus, for large quantities a different technique called pressing is used, which costs
only pennies per CD or DVD.

Rewritable CDs and DVDs use a different recording surface that has a crystal-
line, reflective material; pits are formed that are not reflective in a manner similar
to that for a write-once CD or DVD. To erase the CD or DVD, the surface is
heated and cooled slowly, allowing an annealing process to restore the surface
recording layer to its crystalline structure. These rewritable disks are the most
expensive, with write-once being cheaper; for read-only disks—used to distribute
software, music, or movies—both the disk cost and recording cost are much
lower.

Communicating with Other Computers

We've explained how we can input, compute, display, and save data, but there is
still one missing item found in today’s computers: computer networks. Just as the
processor shown in Figure 1.5 on page 16 is connected to memory and [/O
devices, networks connect whole computers, allowing computer users to extend

floppy disk A portable form of
secondary memory composed of
a rotating mylar platter coated
with a magnetic recording
material.
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local area network (LAN) A
network designed to carry data
within a geographically confined
area, typically within a single
building.

wide area network A network
extended over hundreds of kilo-
meters which can span a conti-
nent.

the power of computing by including communication. Networks have become so
popular that they are the backbone of current computer systems; a new machine
without an optional network interface would be ridiculed. Networked computers
have several major advantages:

B Communication: Information is exchanged between computers at high
speeds.

WM Resource sharing: Rather than each machine having its own I/O devices,
devices can be shared by computers on the network.

B Nonlocal access: By connecting computers over long distances, users need
not be near the computer they are using.

Networks vary in length and performance, with the cost of communication
increasing according to both the speed of communication and the distance that
information travels. Perhaps the most popular type of network is the Ethernet. Its
length is limited to about a kilometer, and the most popular version in 2004 takes
about a tenth of a second to send 1 million bytes of data. Its length and speed
make Ethernet useful to connect computers on the same floor of a building;
hence, it is an example of what is generically called a local area network. Local
area networks are interconnected with switches that can also provide routing ser-
vices and security. Wide area networks cross continents and are the backbone of
the Internet, which supports the World Wide Web. They are typically based on
optical fibers and are leased from telecommunication companies.

Networks have changed the face of computing in the last 25 years both by
becoming much more ubiquitous and by dramatic increases in performance. In
the 1970s, very few individuals had access to electronic mail, the Internet and Web
did not exist, and physically mailing magnetic tapes was the primary way to trans-
fer large amounts of data between two locations. In the 1970s, local area networks
were almost nonexistent, and the few existing wide area networks had limited
capacity and restricted access.

As networking technology improved, it became much cheaper and had a much
higher capacity. For example, the first standardized local area network technology
developed about 25 years ago was a version of Ethernet that had a maximum
capacity (also called bandwidth) of 10 million bits per second, typically shared by
tens, it not a hundred, computers. Today, local area network technology oftfers a
capacity of from 100 million bits per second to a gigabit per second, usually
shared by at most a few computers. Furthermore, 10-gigabit technology is in
development! Optical communications technology has allowed similar growth in
the capacity of wide area networks from hundreds of kilobits to gigabits, and from
hundreds of computers connected to a worldwide network to millions of comput-
ers connected. This combination of dramatic rise in deployment of networking
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combined with the increases in capacity have made network technology central to
the information revolution of the last 25 years.

Recently, another innovation in networking is reshaping the way computers
communicate. Wireless technology has become widely deployed, and most lap-
tops now incorporate this technology. The ability to make a radio in the same low-
cost semiconductor technology (CMOS) used for memory and microprocessors
enabled a significant improvement in price, leading to an explosion in deploy-
ment. Currently available wireless technologies, called by the IEEE standard name
802.11, allow for transmission rates from 1 to less than 100 million bits per sec-
ond. Wireless technology is quite a bit ditferent from wire-based networks, since
all users in an immediate area share the airwaves.

1. Semiconductor DRAM and disk storage differ significantly. Describe the
fundamental difference for each of the tollowing: volatility, access time, and
cost.

Technologies for Building Processors and Memories

Processors and memory have improved at an incredible rate because computer
designers have long embraced the latest in electronic technology to try to win the
race to design a better computer. Figure 1.12 shows the technologies that have
been used over time, with an estimate of the relative performance per unit cost for
each technology. This section explores the technology that has fueled the com-
puter industry since 1975 and will continue to do so for the foreseeable future.
Since this technology shapes what computers will be able to do and how quickly
they will evolve, we believe all computer professionals should be familiar with the
basics of integrated circuits.

A transistor is simply an on/off switch controlled by electricity. The integrated
circuit (IC) combined dozens to hundreds of transistors into a single chip. To
describe the tremendous increase in the number of transistors from hundreds to

Technology used in computers Relative performance/unit cost

1951 Vacuum tube 1
1965 Transistor 35
1975 Integrated circuit 900
1995 Very large scale integrated circuit 2,400,000
2005 Ultra large scale integrated circuit 6,200,000,000

FIGURE 1.12 Relative performance per unit cost of technologies used in computers
over time. Source: Computer Museum, Boston, with 2005 extrapolated by the authors.

Check
Yourself

transistor An on/off switch
controlled by an electric signal.

vacuum tube An electronic
component, predecessor of the
transistor, that consists of a hol-
low glass tube about 5 to 10 cm
long from which as much air has
been removed as possible and
which uses an electron beam to
transfer data.
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very large scale integrated
(VLSI) circuit A device con-
taining hundreds of thousands
to millions of transistors.

I thought [computers | would
be a universally applicable
idea, like a book 1s. But I
didn’t think it would develop
as fast as it did, because I
didn’t envision we'd be able
to get as many parts on a
chip as we finally got. The
transistor came along unex-
pectedly. It all happened
much faster than we
expected.

J. Presper Eckert, coinventor of

ENIAC, speaking in 1991
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FIGURE 1.13 Growth of capacity per DRAM chip over time. The y-axis is measured in Kbits,
where K = 1024 (21°). The DRAM industry quadrupled capacity almost every 3 years, a 60% increase per
year, for 20 years. This "four times every three years” estimate was called the DRAM growth rule. In recent
years, the rate has slowed down somewhat and is somewhat closer to doubling every two years or four times
every four years.

millions, the adjective very large scale is added to the term, creating the
abbreviation VLSI, for very large scale integrated circuit.

This rate of increasing integration has been remarkably stable. Figure 1.13
shows the growth in DRAM capacity since 1977. For 20 years, the industry has
consistently quadrupled capacity every 3 years, resulting in an increase in excess of
16,000 times! This increase in transistor count for an integrated circuit is popu-
larly known as Moore’s law, which states that transistor capacity doubles every 18—
24 months. Moore’s law resulted from a prediction of such growth in IC capacity
made by Gordon Moore, one of the founders of Intel during the 1960s.

Sustaining this rate of progress for almost 40 years has required incredible
innovation in the manufacturing techniques. In Section 1.4, we discuss how inte-
grated circuits are manufactured.

Real Stuff: Manufacturing Pentium
4 Chips

Each chapter has a section entitled “Real Stuft” that ties the concepts in the book
with a computer you may use every day. These sections cover the technology
underlying the IBM-compatible PC, the Apple Macintosh, a common server, or
an embedded computer. For this first “Real Stuft” section, we look at how inte-
grated circuits are manufactured, with the Pentium 4 as an example.
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Let's start at the beginning. The manufacture of a chip begins with silicon, a
substance found in sand. Because silicon does not conduct electricity well, it is
called a semiconductor. With a special chemical process, it is possible to add
materials to silicon that allow tiny areas to transform into one of three devices:

B Excellent conductors of electricity (using either microscopic copper or alu-
minum wire)

B Excellent insulators from electricity (like plastic sheathing or glass)

B Areas that can conduct or insulate under special conditions (as a switch)

Transistors fall in the last category. A VLSI circuit, then, is just billions of combi-
nations of conductors, insulators, and switches manufactured in a single, small
package.

The manufacturing process for integrated circuits is critical to the cost of the
chips and hence important to computer designers. Figure 1.14 shows that process.
The process starts with a silicon crystal ingot, which looks like a giant sausage.
Today, ingots are 8—12 inches in diameter and about 12-24 inches long. An ingot
is finely sliced into wafers no more than 0.1 inch thick. These waters then go
through a series of processing steps, during which patterns of chemicals are placed

Blank
Silicon ingot wafers
| processing steps
Tested dies Tested Patterned wafers
00 wafer p
Bond die 1 IZIDDEDIZIHIZI , | | |Wf | L
ond die to afer
package 1 00 & O RERY dﬁ% tester
OO r
l 1]
Packaged dies Tested packaged dies
[ _ [O=x Ship to
Eﬂ]ﬂ tester EE customers

FIGURE 1.14 The chip manufacturing process. After being sliced from the silicon ingot, blank
wafers are put through 20 to 40 steps to create patterned wafers (see Figure 1.15 on page 31). These pat-
terned wafers are then tested with a wafer tester and a map of the good parts is made. Then, the wafers are
diced into dies (see Figure 1.9 on page 21). In this figure, one wafer produced 20 dies, of which 17 passed
testing. (X means the die is bad.) The yield of good dies in this case was 17/20, or 85%. These good dies are
then bonded into packages and tested one more time before shipping the packaged parts to customers. One
bad packaged part was found in this final test.

silicon A natural element
which is a semiconductor.

semiconductor A substance
that does not conduct electricity
well.

silicon crystal ingot A rod
composed of a silicon crystal
that is between 6 and 12 inches
in diameter and about 12 to 24
inches long.

wafer A slice from a silicon
ingot no more than 0.1 inch
thick, used to create chips.



30

Chapter 1 Computer Abstractions and Technology

defect A microscopic flaw in a
wafer or in patterning steps that
can result in the failure of the

die containing that defect.

die The individual rectangular
sections that are cut from a
wafer, more informally known
as chips.

yield The percentage of good
dies from the total number of
dies on the wafer.

on each watfer, creating the transistors, conductors, and insulators discussed ear-
lier. Today’s integrated circuits contain only one layer of transistors but may have
from two to eight levels of metal conductor, separated by layers of insulators.

A single microscopic tlaw in the wafer itself or in one of the dozens of pattern-
ing steps can result in that area of the wafer failing. These defects, as they are
called, make it virtually impossible to manufacture a perfect wafer. To cope with
imperfection, several strategies have been used, but the simplest is to place many
independent components on a single wafer. The patterned watfer is then chopped
up, or diced, into these components, called dies and more informally known as
chips. Figure 1.15 is a photograph of a wafer containing Pentium 4 microproces-
sors before they have been diced; earlier, Figure 1.9 on page 21 showed an indi-
vidual die of the Pentium 4 and its major components.

Dicing enables you to discard only those dies that were unlucky enough to con-
tain the flaws, rather than the whole wafer. This concept is quantified by the yield
of a process, which is defined as the percentage of good dies from the total number
of dies on the wafer.

The cost of an integrated circuit rises quickly as the die size increases, due both
to the lower yield and the smaller number of large dies that fit on a water. To
reduce the cost, a large die is often “shrunk” by using the next generation process,
which incorporates smaller sizes for both transistors and wires. This improves the
yield and the die count per wafer. (An @, Integrated Circuit Cost section on the
CD probes these issues further.)

Once you've found good dies, they are connected to the input/output pins of
a package, using a process called bonding. These packaged parts are tested a final
time, since mistakes can occur in packaging, and then they are shipped to cus-
tomers.

Another increasingly important design constraint is power. Power is a chal-
lenge for two reasons. First, power must be brought in and distributed around the
chip; modern microprocessors use hundreds of pins just for power and ground!
Similarly, multiple levels of interconnect are used solely for power and ground dis-
tribution to portions of the chip. Second, power is dissipated as heat and must be
removed. An Intel Pentium 4 at 3.06 GHz burns 82 watts, which must be removed
from a chip whose surface area is just over 1 cm?! Figure 1.16 shows a 3.06 GHz
Pentium 4 mounted on top of its heat sink, which in turn sits right next to the fan
in the box shown in Figure 1.8 (on page 19)!

What determines the power consumed by an integrated circuit? Ignoring tech-
nology and circuit specifics, the power is proportional to the product of the num-
ber of transistors switched times the frequency they are switched. Thus, in general,
higher clock rates or higher transistor counts lead to higher power. For example,
the Intel Itanium 2 has four times the transistors of the Intel Pentium 4; although
its clock rate is only one-half that of the Pentium 4, the Itanium burns 130 watts
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FIGURE 1.15 An 8-inch (200-mm) diameter wafer containing Intel Pentium 4 processors.
The number of Pentium dies per wafer at 100% yield is 165. Figure 1.9 on page 21 is a photomicrograph of
one of these Pentium 4 dies. The die area is 250 mmz, and it contains about 55 million transistors.This die
uses a 0.18 micron technology, which means that the smallest transistors are approximately 0.18 microns in
size, although they are typically somewhat smaller than the actual feature size, which refers to the size of the
transistors as “drawn” versus the final manufactured size. The Pentium 4 is also made using a more
advanced 0.13 micron technology. The several dozen partially rounded chips at the boundaries of the wafer
are useless; they are included because it’s easier to create the masks used to pattern the silicon.

compared to the 82 watts consumed by the Pentium 4. As we will see in later chap-
ters, both performance and power consumption vary widely.

Elaboration: In CMOS (Complementary Metal Oxide Semiconductor), which is the
dominant technology for integrated circuits, the primary source of power dissipation is
so<called “dynamic power”—that is, power that is consumed during switching. CMOS
technology, unlike earlier technologies, does not directly consume power when it is
idle—hence the use of low clock rates to allow a processor to “sleep” and conserve
power. The dynamic power dissipation depends on the capacitive loading of each tran-
sistor, the voltage applied, and the frequency that the transistor is switched:

Power = Capacitive load x ‘i..*'n:::-l‘[age2 = Frequency switched
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FIGURE 1.16 An Intel Pentium 4 (3.06 GHz) mounted on top of its heat sink, which is
designed to remove the 82 watls generated within the die.

Power can be reduced by lowering the voltage, which typically occurs with a new gen-
eration of technology; in 20 years, voltages have gone from 5V to 1.5V, signhificantly
reducing power. The capacitive load per transistor is a function of both the number of
transistors connected to an output (called the fanout) and the technology, which deter-
mines the capacitance of both wires and transistors.

Although dynamic power is the primary source of power dissipation in CMOS, static
power dissipation occurs because of leakage current that flows even when a transistor
is off. In 2004, leakage is probably responsible for 20-30% of the power consumption.
Thus, increasing the number of transistors increases power dissipation, even if the
transistors are always off. A variety of design techniques and technology innovations
have been deployed to control leakage.



1.5 Fallacies and Pitfalls

A key factor in determining the cost of an integrated circuit is volume. Which of
the following are reasons why a chip made in high volume should cost less?

1. With high volumes, the manufacturing process can be tuned to a particular
design, increasing the yield.

2. Ttis less work to design a high-volume part than a low-volume part.

3. The masks used to make the chip are expensive, so the cost per chip is lower
for higher volumes.

4. Engineering development costs are high and largely independent of vol-
ume; thus, the development cost per die is lower with high-volume parts.

5. High-volume parts usually have smaller die sizes than low-volume parts
and therefore have higher yield per wafer.

Fallacies and Pitfalls

The purpose of a section on fallacies and pitfalls, which will be found in every
chapter, is to explain some commonly held misconceptions that you might
encounter. We call such misbeliefs fallacies. When discussing a fallacy, we try to
give a counterexample. We also discuss pitfalls, or easily made mistakes. Often pit-
falls are generalizations of principles that are true in a limited context. The pur-
pose of these sections is to help you avoid making these mistakes in the machines
you may design or use.

Fallacy: Computers have been built in the same, old-fashioned way for far too
long, and this antiquated model of computation is running out of steam.

For an antiquated model of computation, it surely is improving quickly.
Figure 1.17 plots the top performance per year of workstations between 1987 and
2003. (Chapter 4 explains the proper way to measure performance.) The graph
shows a line indicating an improvement of 1.54 per year, or doubling performance
approximately every 18 months. In contrast to the statement above, computers are
improving in performance faster today than at any time in their history, with over
a thousandfold improvement between 1987 and 2003!

Pitfall: Ignoring the inexorable progress of hardware when planning a new
machine.

Suppose you plan to introduce a machine in three years, and you claim the
machine will be a terrific seller because it’s three times as fast as anything available
today. Unfortunately, the machine will probably sell poorly because the average

Check
Yourself

Science must begin with
myths, and the criticism of
myths.

Sir Karl Popper, The
Philosophy of Science, 1957
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FIGURE 1.17 Performance increase of workstations, 1987-2003. Here performance is given
as approximately the number of times faster than the VAX-11/780, which was a commonly used yardstick.
The rate of performance improvement is between 1.5 and 1.6 times per year. These performance numbers
are based on SPECint performance (see Chapter 2) and scaled over time to deal with changing benchmark
sets. For processors listed with x/y after their name, x is the model number and y is the speed in megahertz.

performance growth rate for the industry will yield machines with the same
performance. For example, assuming a 50% yearly growth rate in performance, a
machine with performance x today can be expected to have performance 1.5%x =
3.4x in three years. Your machine would have no performance advantage! Many
projects within computer companies are canceled, either because they ignore this
rule or because the project is completed late and the performance of the delayed
machine is below the industry average. This phenomenon may occur in any
industry, but rapid improvements in cost/performance make it a major concern in
the computer industry.



1.6 Concluding Remarks

Concluding Remarks

Although it is difthicult to predict exactly what level of cost/performance comput-
ers will have in the future, it’s a safe bet that they will be much better than they are
today. To participate in these advances, computer designers and programmers
must understand a wider variety of issues.

Both hardware and software designers construct computer systems in hierar-
chical layers, with each lower layer hiding details from the level above. This princi-
ple of abstraction is fundamental to understanding today’s computer systems, but
it does not mean that designers can limit themselves to knowing a single technol-
ogy. Perhaps the most important example of abstraction is the interface between
hardware and low-level software, called the instruction set architecture. Maintain-
ing the instruction set architecture as a constant enables many implementations of
that architecture—presumably varying in cost and performance—to run identical
software. On the downside, the architecture may preclude introducing innova-
tions that require the interface to change.

Key technologies for modern processors are compilers and silicon. Clearly, to
participate you must understand some of the characteristics of both. Equal in
importance to an understanding of integrated circuit technology is an under-
standing of the expected rates of technological change. While silicon fuels the
rapid advance of hardware, new ideas in the organization of computers have
improved price/performance. Two of the key ideas are exploiting parallelism in
the processor, typically via pipelining, and exploiting locality of accesses to a
memory hierarchy, typically via caches.

Road Map for This Book

At the bottom of these abstractions are the five classic components of a
computer: datapath, control, memory, input, and output (refer back to Figure

1.5). These five components also serve as the framework for the rest of the chap-
ters in this book:

B Datapath: Chapters 3,5, and 6
B Control: Chapters5 and 6

B Memory: Chapter 7

B [nput: Chapter 8

B Output: Chapter 8

Where. . . the ENIAC is
equipped with 18,000
vacuum tubes and weighs 30
tons, computers in the future
may have 1,000 vacuum
tubes and perhaps weigh just
11/2 tons.

Popular Mechanics, March
1949
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An active field of science is
like an immense anthill; the
individual almost vanishes
into the mass of minds tum-
bling over each other, carry-
ing information from place
to place, passing it around at

the speed of light.

Lewis Thomas, “Natural
Science,” in The Lives of a Cell,

1974

Chapter 6 describes how processor pipelining exploits parallelism, and Chapter 7
describes how the memory hierarchy exploits locality. The remaining chapters
provide the introduction and the conclusion to this material. Chapter 2 describes
instruction sets—the interface between compilers and the machine—and empha-
sizes the role of compilers and programming languages in using the features of the
instruction set. Chapter 3 describes how computers perform arithmetic opera-
tions and handle arithmetic data. Chapter 4 covers performance and thus
describes how to evaluate the whole computer. Chapter 9 describes multiproces-
sors and is included on the CD. Appendix B, also on the CD, discusses logic
design.

1.7 Historical Perspective and Further
; Reading

For each chapter in the text, a section devoted to a historical perspective can be
found on the CD that accompanies this book. We may trace the development of
an idea through a series of machines or describe some important projects, and we
provide references in case you are interested in probing further.

The historical perspective for this chapter provides a background for some of
the key ideas presented in this opening chapter. Its purpose is to give you the
human story behind the technological advances and to place achievements in
their historical context. By understanding the past, you may be better able to
understand the forces that will shape computing in the future. Each historical per-
spectives section on the CD ends with suggestions for further reading, which are
also collected separately on the CD under the section “Further Reading.” The rest
of this @ Section 1.7 is on the CD.

Exercises

The relative time ratings of exercises are shown in square brackets after each exer-
cise number. On average, an exercise rated [10] will take you twice as long as one
rated [5]. Sections of the text that should be read before attempting an exercise
will be given in angled brackets; for example, <§1.2> means you should have read
Section 1.3, “Under the Covers,” to help you solve this exercise. If the solution to
an exercise depends on others, they will be listed in curly brackets; for example,
{Ex.1.1} means that you should answer Exercise 1.1 before trying this exercise.

In More Depth Exercises introduce a new topic or explore a topic in more
detail. Such exercises include sutficient background to understand the concepts, as
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well as exercises to explore its implication or use. The In More Depth sections
appear on the CD associated with the specific chapter.

Starting in Chapter 2, you will also find For More Practice Exercises. For More
Practice Exercises include additional problems intended to give the interested
reader more practice in dealing with a subject. These exercises have been collected
primarily from earlier editions of this book as well as exercises developed by other
instructors. The For More Practice sections appear on the CD associated with the
specific chapter.

Exercises 1.1 through 1.28 Find the word or phrase from the list below that
best matches the description in the following questions. Use the numbers to the
lett of words in the answer. Each answer should be used only once.

1 abstraction 15  embedded system

2 assembler 16  instruction

3 bit 17  instruction set architecture
4 cache 18  local area network (LAN)
5 central processor unit (CPU) 19  memory

6 chip 20 operating system

7 compiler 21  semiconductor

8 computer family 22 server

9 control 23 supercomputer

10 datapath 24 ftransistor

11  desktop or personal computer 25 VLSI (very large scale integrated circuit)
12 Digital Video Disk (DVD) 26 wafer

13 defect 27  wide area network (WAN)

14 DRAM (dynamic random access memory) 28  yield

1.1 [2] Active part of the computer, following the instructions of the programs to
the letter. It adds numbers, tests numbers, controls other components, and so on.

1.2 [2] Approach to the design of hardware or software. The system consists of hi-
erarchical layers, with each lower layer hiding details from the level above.

1.3 [2] Binary digit.

1.4 [2] Collection of implementations of the same instruction set architecture.
They are usually made by the same company and vary in price and performance.
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1.5 [2] Component of the computer where all running programs and associated
data reside.

1.6 [2] Component of the processor that performs arithmetic operations.

1.7 [2] Component of the processor that tells the datapath, memory, and I/O de-
vices what to do according to the instructions of the program.

1.8 [2] Computer designed for use by an individual, usually incorporating a
graphics display, keyboard, and mouse.

1.9 [2] Computer inside another device used for running one predetermined ap-
plication or collection of software.

1.10 [2| Computer used for running larger programs for multiple users often si-
multaneously and typically accessed only by a network.

1.11 [2| Computer network that connects a group of computers by a common
transmission cable or wireless link within a small geographic area (for example,
within the same floor of a building).

1.12 [2] Computer networks that connect computers spanning great distances,
the backbone of the Internet.

1.13 [2] High-performance machine, costing more than $1 million.

1.14 2] Integrated circuit commonly used to construct main memory.
1.15 [2] Microscopic tlaw in a wafer.

1.16 [2] Nickname for a die or integrated circuit.

1.17 (2] On/oft switch controlled by electricity.

1.18 [2] Optical storage medium with a storage capacity of more than 4.7 GB. It
was initially marketed for entertainment and later for computer users.

1.19 2] Percentage of good dies from the total number of dies on the wafer.

1.20 [2| Program that converts a symbolic version of an instruction into the bi-
nary version.

1.21 (2] Program that manages the resources of a computer for the benefit of the
programs that run on that machine.

1.22 [2] Program that translates from a higher-level notation to assembly lan-

guage.

1.23 [2]Technology in which single chip that contains hundreds of thousands to
millions of transistors.
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1.24 |

1.25

1.27

2
B
1.26 |2

l

| Single software command to a processor.

Small, fast memory that acts as a butfter for the main memory.

| Specific interface that the hardware provides the low-level software.

2] Substance that does not conduct electricity well but is the foundation of
integrated circuits.

1.28 [2| Thin disk sliced from a silicon crystal ingot, which will be later divided

into dies.

Exercises 1.29 through 1.45 Using the categories in the list below, classify
the following examples. Use the letters to the left of the words in the answer.
Unlike the previous exercises, answers in this group may be used more than once.

d

1.29
1.30

1.31 |
1.32 (1]
1.33 (1]
1.34 (1]
1.35 [1]
1.36 [1]
1.37 |
1.38 [1]
1.39 (1]
1.40 |
1.41 1]
1.42 |

applications software f
high-level programming language g
input device h
integrated circuit i
output device

1| Assembler

1] C++

1] Liquid crystal display (LCD)

1] Compiler

1] Cray-1

1] DRAM

1] IBM PC

1] Java

1] Scanner

1] Macintosh

l| Microprocessor

1| Microsoft Word

1] Mouse

1] Operating system

personal computer
semiconductor
supercomputer

systems software
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1.43 [1] Printer
1.44 [1] Silicon
1.45 [1] Spreadsheet

1.46 [15] <§1.3> In a magnetic disk, the disks containing the data are constantly
rotating. On average it should take half a revolution for the desired data on the disk
to spin under the read/write head. Assuming that the disk is rotating at 7200 revo-
lutions per minute (RPM), what is the average time for the data to rotate under the
disk head? What is the average time if the disk is spinning at 10,000 revolutions per
minute?

1.47 [5] <§1.3> A DVD drive, however, works in the Constant Linear Velocity
(CLV) mode. The read head must interact with the concentric circles at a constant
rate, whether it is accessing data from the inner or outermost portions of the disc.
This is affected by varying the rotation speed of the disc, from 1600 RPM at the
center, to 570 RPM at the outside. Assuming that the DVD drive reads 1.35 MB of
user data per second, how many bytes can the center circle store? How many bytes
can the outside circle store?

1.48 [5]| <§1.3> If a computer issues 30 network requests per second and each re-
quest is on average 64 KB, will a 100 Mbit Ethernet link be sufficient?

1.49 [5] <§1.3>What kinds of networks do you use on a regular basis? What
kinds of media do they use? How much bandwidth do they provide?

1.50 [15] <§1.3> End-to-end delay is an important performance metric for net-
works. It is the time between the point when the source starts to send data and the
point when the data is completely delivered to the destination. Consider two hosts
A and B, connected by a single link of rate R bps. Suppose the two hosts are sepa-
rated by m meters, and suppose the propagation speed along the link is s m/sec.
Host A is sending a file of size L bits to host B.

a. Obtain an expression for the end-to-end delay in terms of R, L, m1, and s.

b. Suppose there is a router between A and B, and the data from A must be for-
warded to B by the router. If the forwarding process takes t sec, then what is
the end-to-end delay?

c. Suppose the router is configured to provide QoS (Quality of Service) control
for different kinds of data. If the data is a multimedia stream, such as video
conference data, it will forward it at a shorter delay of #/2 sec. For other
kinds of data, the delay is f sec. If host A is sending a multimedia stream of
size 2L, what is the end-to-end delay?
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1.51 [15] <§§1.4, 1.5> Assume you are in a company that will market a certain IC
chip. The fixed costs, including R&D, fabrication and equipments, and so on, add
up to $500,000. The cost per wafer is $6000, and each water can be diced into 1500
dies. The die yield is 50%. Finally, the dies are packaged and tested, with a cost of
$10 per chip. The test yield is 90%; only those that pass the test will be sold to cus-
tomers. If the retail price is 40% more than the cost, at least how many chips have
to be sold to break even?

1.52 [8] <§1.6> In this exercise, you will evaluate the performance ditference be-
tween two CPU architectures, CISC (Complex Instruction Set Computing) and
RISC (Reduced Instruction Set Computing). Generally speaking, CISC CPUs have
more complex instructions than RISC CPUs and therefore need fewer instructions
to perform the same tasks. However, typically one CISC instruction, since it is
more complex, takes more time to complete than a RISC instruction. Assume that
a certain task needs P CISC instructions and 2P RISC instructions, and that one
CISC instruction takes 8T ns to complete, and one RISC instruction takes 2T ns.
Under this assumption, which one has the better performance?

1.53 [15] <§§1.3, 1.6> Suppose there are tive computers connected together to
form a local area network. The maximum data transport rate (bandwidth) that the
network cable can provide is 10 Mbps. If we use a low-end device (Hub) to connect
them, all the computers in the network share the 10 Mbps bandwidth. If we use a
high-end device (Switch), then any two of the computers can communicate with
each other without disturbing the other computers. If you want to download a 10
MB file from a remote server, which is located outside your local network, how
long will it take if using a Hub? How long will it take if using a Switch? Assume the
other four computers only communicate with each other, and each has a constant
data rate of 2 Mbps.

1.54 (8] <§1.6> Sometimes software optimization can dramatically improve the
performance of a computer system. Assume that a CPU can perform a multiplica-
tion operation in 10 ns, and a subtraction operation in 1 ns. How long will it take
for the CPU to calculate the result of d = a x b —a x c¢? Could you optimize the
equation so that it will take less time?

1.55 (8] <§§1.1-1.5> This book covers abstractions for computer systems at
many different levels of detail. Pick another system with which you are familiar and
write one or two paragraphs describing some of the many different levels of ab-
straction inherent in that system. Some possibilities include automobiles, homes,
airplanes, geometry, the economy, a city, and the government. Be sure to identity
both high-level and low-level abstractions.
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Answers to
Check Yourself

1.56 [15] <§§1.1-1.5> A less technically inclined friend has asked you to explain
how computers work. Write a detailed, one-page description for your friend.

1.57 [10] <§§1.1-1.5> In what ways do you lack a clear understanding of how
computers work? Are there levels of abstraction with which you are particularly
unfamiliar? Are there levels ot abstraction with which you are tamiliar but still have
specific questions about? Write at least one paragraph addressing each of these
questions.

1.58 (15| <§1.3> In this exercise, you will learn more about interfaces or abstrac-
tions. For example, we can provide an abstraction for a disk like this:

Performance characteristics:
m Capacity (how much data can it store?)

B Bandwidth (how fast can data be transferred between the computer and
disk?)

B Latency (how long does it take to find a specific position for access?)

Functions the interface provides:
B Read/write data
B Seek to a specific position

B Status report (is the disk ready to read/write, etc.?)

Following this pattern, please provide an abstraction for a network card.
1.59 (5] <§§1.4, 1.5> [@ In More Depth: Integrated Circuit Cost
1.60 [15] <§§1.4, 1.5> [@ In More Depth: Integrated Circuit Cost
1.61 [10] <§§1.4, 1.5> @] In More Depth: Integrated Circuit Cost
1.62 (5] <§§1.4, 1.5> @ In More Depth: Integrated Circuit Cost
1.63 [10] <§§1.4, 1.5> [@ In More Depth: Integrated Circuit Cost
1.64 [10] <§§1.4, 1.5> @ In More Depth: Integrated Circuit Cost

§1.1, page 10: Discussion questions: lots of answers are acceptable.
§1.3, page 27: Disk memory: nonvolatile, long access time (milliseconds), and cost
$2—-4/GB. Semiconductor memory: volatile, short access time (nanoseconds), and

cost $200—400/GB.
§1.4, page 33: 1, 3, and 4 are valid reasons.






Computers
in the
Real World

Information Technology for the 4

Billion without IT

Throughout this book you will see sections
entitled “Computers in the Real World.” These
sections describe compelling uses for comput-
ers outside of their typical functions in office
automation and data processing. The goal of
these sections is to illustrate the diversity of
uses for information technology.

Problem to solve: Make information tech-
nology available to the rest of humanity, such
as farmers in rural villages, beyond a multilin-
gual character set like Unicode.

Solution: Develop a computer, software, and
a communication system for a rural farming
village. However, there is no electricity, no
telephone, no technical support, and the vil-
lagers do not read English.

The Jhai Foundation took on this challenge
for five villages in the Hin Heup district of
Laos. This American-Lao foundation was
founded to raise the standard of living for
rural Laos by developing an export economy.
[t also built schools, installed wells, and

started a weaving cooperative. When asked

what they wanted next, villagers said they
wanted access to the Internet! First, they
wanted to learn the prices before taking their
crops to the nearest market, which is 35 Kkilo-
meters away. They could also learn about the
market abroad to make better decisions on
what crops to grow and to increase their bar-
gaining power when it was time to sell them.
Second, they wanted to use Internet telephony
to talk to relatives in Laos and beyond.

The goal was “a rugged computer and
printer assembled from off-the-shelf compo-
nents that draws less than 20 watts in normal
use—less than 70 watts when the printer is
printing—and that can survive dirt, heat, and
immersion in water.”

The resulting Jhai PC design uses flash
memory instead of a disk drive, thereby elimi-
nating moving parts from the PC to make it
more rugged and easier to maintain. Rather
than use a power-hungry cathode ray tube, it
has a liquid-crystal display. To lower costs and
power, it uses an 80486 microprocessor. The
power is supplied by a car battery, which can
be charged by a turning bicycle crank. An old



A Laotian villager who wanted

access to the Internet.
dot matrix printer completes the hardware,

bringing the cost to about $400. The operating
system is Linux, and the applications are
accounting, email, and letter writing, which
expatriates are tailoring to the Lao language.

The communication solution is to adapt the
WiFi (IEEE 802.11b) wireless network (see
Chapter 8). The plan is to boost the signal
using larger antennas and then place repeater
stations on the hilltops between the village and
the market city. These repeaters get their
power from solar cells. The local phone system
ties to it at the far end, which completes the
connection to the Internet. Twenty-five volun-
teers in Silicon Valley are developing this Jhai
PC network.

An alternative attempt is the simputer,
which stands for “simple, inexpensive, multi-
lingual computer.” Indian computer scientists

designed this personal digital assistant, which
is similar to the Palm Pilot, to meet the needs
of villagers in third world countries. Input is
through a touch screen and speech recogni-
tion so that people need not be able to write to
use it. It uses three AAA batteries, which last 3
to 4 hours. The cost is $250, and there is no
special solution for communication. It’s
unclear whether villagers in the developing
world would spend $250 on a PDA, where
even batteries are a luxury.

To learn more see these references on

“Making the Web world-wide,” The Economist, Septem-
ber 26, 2002, www.jhai.org/economist

The Jhai Foundation, www.jhai.org/

“Computers for the Third World,” Scientific American,
October 2002

Indian villager using the Simputer.
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I speak Spanish to God,
Ttalian to women,

French to men,

and German to my horse.

Charles V, King of France
1337-1380
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Chapter 2 Instructions: Language of the Computer

instruction set The vocabu-
lary of commands understood
by a given architecture.

Introduction

To command a computer’s hardware, you must speak its language. The words of a
computer's language are called instructions, and its vocabulary is called an
instruction set. In this chapter, you will see the instruction set of a real computer,
both in the form written by humans and in the form read by the computer. We
introduce instructions in a top-down fashion. Starting from a notation that looks
like a restricted programming language, we refine it step-by-step until you see the
real language of a real computer. Chapter 3 continues our downward descent,
unveiling the representation of integer and tloating-point numbers and the hard-
ware that operates on them.

You might think that the languages of computers would be as diverse as those
of humans, but in reality computer languages are quite similar, more like regional
dialects than like independent languages. Hence, once you learn one, it is easy to
pick up others. This similarity occurs because all computers are constructed from
hardware technologies based on similar underlying principles and because there
are a few basic operations that all computers must provide. Moreover, computer
designers have a common goal: to find a language that makes it easy to build the
hardware and the compiler while maximizing performance and minimizing cost.
This goal is time-honored; the following quote was written before you could buy a
computer, and it is as true today as it was in 1947:

It is easy to see by formal-logical methods that there exist certain [instruction
sets| that are in abstract adequate to control and cause the execution of any se-
quence of operations. . .. The really decisive considerations from the present
point of view, in selecting an [instruction set|, are more of a practical

nature: simplicity of the equipment demanded by the [instruction set|, and the
clarity of its application to the actually important problems together with the
speed of its handling of those problems.

Burks, Goldstine, and von Neumann, 1947

The “simplicity of the equipment” is as valuable a consideration for comput-
ers of the 2000s as it was for those of the 1950s. The goal of this chapter is to
teach an instruction set that follows this advice, showing both how it is repre-
sented in hardware and the relationship between high-level programming lan-
guages and this more primitive one. Our examples are in the C programming
language; Section 2.14 shows how these would change for an object-oriented
language like Java.
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By learning how to represent instructions, you will also discover the secret of
computing: the stored-program concept. Moreover you will exercise your “for-
eign language” skills by writing programs in the language of the computer and
running them on the simulator that comes with this book. You will also see the
impact of programming languages and compiler optimization on performance.
We conclude with a look at the historical evolution of instruction sets and an
overview of other computer dialects.

The chosen instruction set comes from MIPS, which is typical of instruction
sets designed since the 1980s. Almost 100 million of these popular microproces-
sors were manufactured in 2002, and they are found in products from ATI Tech-
nologies, Broadcom, Cisco, NEC, Nintendo, Silicon Graphics, Sony, Texas
Instruments, and Toshiba, among others.

We reveal the MIPS instruction set a piece at a time, giving the rationale along
with the computer structures. This top-down, step-by-step tutori<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>