Производительность
Когда-то программисты затрачивали огромные усилия на то, чтобы сделать свои программы эффективными, так как компьютеры были очень медленными и очень дорогими. В наши дни компьютеры стали гораздо быстрее и сильно подешевели, так что необходимость в идеальной эффективности заметно снизилась. Стоит ли по-прежнему волноваться из-за производительности? Да, но только в том случае, если проблема действительно важна, если программа действительно работает слишком медленно, а главное, есть надежды на то, что ее удастся ускорить, не потеряв при этом в корректности, строгости и ясности. Быстрая программа, выдающая неправильные результаты, никому времени не сэкономит. Таким образом, первым принципом оптимизации можно считать принцип не делать лишнего. Достаточно ли хороша программа в своем теперешнем состоянии? Мы знаем, как и где она будет использоваться; будут ли заметны выгоды от ее ускорения? Программы, которые пишутся в качестве заданий в колледже, никогда больше не используются, их скорость редко имеет значение. Скорость также редко имеет значение для программ, написанных для собственного использования, временных утилит, испытательных стендов, экспериментов и программ-прототипов. Однако же скорость исполнения коммерческого продукта или центрального компонента системы, например графической библиотеки, может иметь первостепенную важность, так что нам надо знать, как подходить к вопросам производительности. Когда надо пытаться ускорить программу? Как это можно сделать? На какие результаты мы можем рассчитывать? В этой главе мы обсудим, как добиться того, чтобы программа выполнялась быстрее или использовала меньше памяти. Как правило, больше всего нас интересует скорость программы, так что в основном речь пойдет о ней. Проблемы с памятью, оперативной или внешней, возникают реже, но иногда они могут быть критичными, так что мы затронем и этот аспект. Как мы уже выяснили в главе 2, для выполнения задания сначала лучше выбрать самые простые и понятные алгоритмы и структуры данных. После этого надо измерить производительность и решить, нужны ли изменения. Далее следует настроить опции компилятора на создание наибо- : лее быстрого кода; потом оценить, какие изменения в самой программе могут дать наибольший эффект; потом начинать вносить изменения — по одному за раз! — и после каждого повторять предыдущие шаги. При этом J всегда надо сохранять простые версии, чтобы продолжать сравнения. Измерение необходимо при повышении производительности, поскольку умозаключения и интуиция — не вполне надежные советники, и без дополнительных инструментов, таких как команды измерения времени и профилировщики, не обойтись. Увеличение производительности име- 5 ет много общего с тестированием, в этом процессе в той же мере важны такие вещи, как автоматизация, ведение тщательных записей об изменениях и использование возвратных тестов, чтобы видеть, что состояние программы улучшается и не придется откатываться к предыдущим версиям. Если вы выбрали алгоритмы достаточно разумно и пишете аккуратно с самого начала, то очень может быть, что никаких мер для убыстрения ваших программ не потребуется. Нередко для разрешения проблем с производительностью в грамотно спроектированном коде хватает совсем небольших изменений, а вот в плохо спроектированном коде придется переписывать очень многое. |